159 resultados para PM SOURCE APPORTIONMENT
Resumo:
A reflex discharge plasma, obtained as a hybrid between a Penning discharge plasma (PDP) and a hollow-cathode discharge (HCD) plasma, is analysed as a possible direction-current, high-density plasma source. The experiment is run in oxygen at pressures of 10 mTorr and 1 mTorr, and for discharge currents of 100 to 200 mA. Although the gas pressure is considerably lower than those used in HCDs, the hollow-cathode effect (HCE) occurs for current levels higher than 100 mA and leads to plasma densities comparable with those obtained using inductive plasma sources. The presence of a constant magnetic field leads to the enhancement of electron emission from cathodes under ion bombardment, and to the decreasing of the ion loss by diffusion to the wall.
Resumo:
The plasma parameters and relative positive and negative ion concentrations in a small, filtered, multicusp ion source, operating at low plasma density (
Resumo:
Experimental and theoretical electron energy distribution functions (EEDFS) measured in and calculated for the driver of a multicusp ion source operating in hydrogen are compared. The results show that atomic physics based theoretical models can accurately predict the EEDF in such discharges if some appropriate experimentally determined quantities are used as input parameters. The magnitude and shape of the EEDF is found to be particularly sensitive to the effective surface area to volume ratio for electrons.