77 resultados para PKH26, flow cytometry, proliferation, proteoglycan 4 (PRG4), chondrocyte
Resumo:
Background: Oncogenic mutations in BRAF occur in 8% of patients with advanced colorectal cancer (CRC) and have been shown to correlate with poor prognosis. In contrast to BRAF mutant (MT) melanoma, where the BRAF inhibitor PLX4032 has shown significant increases in response rates and overall survival compared to standard Dacarbazine treatment, only minor responses to PLX4032 treatment have been reported in BRAFMT CRC. Clear understanding of the vulnerabilities of BRAFMT CRC is important, and identification of druggable targets uniquely required by BRAFMT CRC tumors has the potential to fill a gap in the therapeutic armamentarium of advanced CRC. The aim of this study was to identify novel resistance mechanisms to MAPK inhibition in BRAFMT CRC.
Methods: Paired BRAFMT/WT RKO and VACO432 CRC cell line models and non-isogenic BRAFMT LIM2405, WiDR and COLO205 CRC cells were used. Changes in protein expression/activity were assessed by Western Blotting. Interaction between MEK1/2 and JAK1/2 inhibition was assessed using the MTT cell viability assays and flow cytometry. Apoptosis was measured using Western blotting for PARP, cleaved caspase 3/8 and caspase 8, 3/7 activity assays.
Results: Treatment with MEK1/2 inhibitors AZD6244, GSK1120212, UO126 and PD98059 resulted in acute increases in STAT3 activity in the BRAFMT RKO and VACO432 cells but not in their BRAFWT clones and this was associated with increases in JAK2 activity. Inhibition of JAK/STAT3 activation using gene specific siRNA or small molecule inhibitors TG101348 or AZD1480, abrogated this survival response and resulted in significant increases in cell death when combined with MEK1/2 inhibitors AZD6244 or GSK1120212 in BRAFMT CRC cells. In addition, combination of MEK1/2 and JAK/STAT3 inhibition resulted in strong synergy with CI values between 0.3 and 0.7 in BRAFMT CRC cells.
Conclusions: We have identified JAK/STAT3 activation as an important escape mechanism for BRAFMT CRC following MEK1/2 inhibition. These data provide a strong rationale for further investigation of combination of MEK1/2 and JAK/STAT3 inhibition in BRAFMT in vivo models.
Resumo:
Mesenchymal stromal cells (MSC) have been reported to improve bacterial clearance in pre-clinical models of Acute Respiratory Distress Syndrome (ARDS) and sepsis. The mechanism of this effect is not fully elucidated yet. The primary objective of this study was to investigate the hypothesis that the anti-microbial effect of MSC in vivo depends on their modulation of macrophage phagocytic activity which occurs through mitochondrial transfer. We established that selective depletion of alveolar macrophages (AM) with intranasal (IN) administration of liposomal clodronate resulted in complete abrogation of MSC anti-microbial effect in the in vivo model of E.coli pneumonia. Furthermore, we showed that MSC administration was associated with enhanced AM phagocytosis in vivo. We showed that direct co-culture of MSC with monocyte-derived macrophages (MDMs) enhanced their phagocytic capacity. By fluorescent imaging and flow cytometry we demonstrated extensive mitochondrial transfer from MSC to macrophages which occurred at least partially through TNT-like structures. We also detected that lung macrophages readily acquire MSC mitochondria in vivo, and macrophages which are positive for MSC mitochondria display more pronounced phagocytic activity. Finally, partial inhibition of mitochondrial transfer through blockage of TNT formation by MSC resulted in failure to improve macrophage bioenergetics and complete abrogation of the MSC effect on macrophage phagocytosis in vitro and the anti-microbial effect of MSC in vivo.
Collectively, this work for the first time demonstrates that mitochondrial transfer from MSC to innate immune cells leads to enhancement in phagocytic activity and reveals an important novel mechanism for the anti-microbial effect of MSC in ARDS.