144 resultados para Other Civil and Environmental Engineering
Resumo:
This paper discusses the marine and terrestrial shell on Epipalaeolithic to Classical-period sites in the Cyrenaican coastlands, northeast Libya, with particular reference to the Haua Fteah, with parallel studies at a late-Roman farmstead and two small caves. Together they provide evidence for coastal and terrestrial environments and for the continued nutritional importance of gastropods to humans during the Holocene. Land snail evidence is consistent with regional vegetation in coastal Cyrenaica becoming increasingly open through the Holocene, as a result of some combination of climate change and human impact. Marine species suggest that the coastline near the Haua had been rocky throughout the Holocene. At Hagfet al-Gama, changing faunas provide evidence for sand encroachment onto a previously rocky shoreline in Hellenistic times. A biometric study of Osilinus turbinatus shows that in the archaeological sites these shells are systematically smaller than modern specimens, providing evidence for long-term dietary stress in the human populations around the Haua Fteah, with particularly severe stress in parts of the Epipalaeolithic. A biometric study of Patella spp. provided evidence for size selection, but also seems to show evidence for resource pressure. It is unlikely that variations in resource pressure seen in the mollusc biometrics are the result of climatic stress or natural ecological factors and explanations must be sought in society-environment dynamics.
Resumo:
This paper gives an overview of the research done since 1999 at Eindhoven University of Technology in the Netherlands in the field of miniaturization of heterogeneous catalytic reactors. It is described that different incentives exist for the development of these microstructured reaction systems. These include the need for efficient research instruments in catalyst development and screening, the need for small-scale reactor devices for hydrogen production for low-power electricity generation with fuel cells, and the recent quest for intensified processing equipment and novel process architectures (as in the fine chemicals sector). It is demonstrated that also in microreaction engineering, catalytic engineering and reactor design go hand-in-hand. This is illustrated by the design of an integrated microreactor and heat-exchanger for optimum performance of a highly exothermic catalytic reaction, viz. ammonia oxidation. It is argued that future developments in catalytic microreaction technology will depend on the availability of very active catalysts (and catalyst coating techniques) for which microreactors may become the natural housing.
The effect of construction pattern and unit interlock on the structural behaviour of block pavements
Resumo:
The maintenance or even replacement of cracked pavements requires considerable financial resources and puts a large burden on the budgets of local councils. In addition to these costs, local councils also face liability claims arising from uneven or cracked pedestrian pavements. These currently cost the Manchester City Council and Preston City Council around £6 million a year each. Design procedures are empirical. A better understanding of the interaction between paving blocks, bedding sand and subbase was necessary in order to determine the mode of failure of pavements under load. Increasing applied stress was found to mobilise ‘‘rotational interlock’’, providing increased pavement stiffness and thus increased load dissipation resulting in lower transmitted stress on the subgrade. The indications from the literature
review were that pavements are designed to fail by excessive deformation and that paving blocks remained uncracked at failure. This was confirmed with experimental data which was obtained from tests on segments of pavements that were laid/constructed in a purpose built test frame in the laboratory.
Resumo:
A new generation of concrete, Ultra-high performance fibre reinforced concrete (UHPFRC) has been developed for its outstanding mechanical performance and shows a very promising future in construction applications. In this paper, several possibilities are examined for reducing the price of producing UHPFRC and for bringing UHPFRC away from solely precast applications and onto the construction site as an in situ material. Recycled glass cullet and two types of local natural sand were examined as replacement materials for the more expensive silica sand normally used to produce UHPFRC. In addition, curing of UHPFRC cubes and prisms at 20 degrees C and 90 degrees C has been investigated to determine differences in both mechanical and ductility.
Resumo:
The ductility of concrete made with commercially available steel and synthetic fibres has been investigated. Flexural stress–deflection relationships have been used to determine: flexural strength, flexural toughness, equivalent flexural strength, and equivalent flexural strength ratio. The flexural toughness of concrete was found to increase considerably when steel and synthetic fibres were used. However, equal dosages of different fibres did not result in specimens with the same flexural toughness. Flexural toughness differences of almost 35 J existed even at the same fibre dosage. This also resulted in considerable differences in the minimum required ground supported slab thickness.
Resumo:
Synopsis: Bonded-in rod timber joints off er several advantages over conventional types of joint, including high local force transfer, very stiff connections, and improved ?re and aesthetic properties since the connection is completely hidden in the insulating timber members. More recently, the use of ?bre reinforced polymer (FRP) as a connecting rod, alternative to steel rods, in bonded-in rod connections for timber structures has been investigated. However, the investigation into the behaviour of such joints is limited, in particular, connections involving basalt ?bre reinforced polymers (BFRP) bars - which is the primary focus of this research. This paper presents an experimental programme conducted to investigate the behaviour of bonded-in BFRP bars loaded parallel to the grain of glulam members. Tensile pull-out tests were conducted to examine the effect of bonded length and bond stress-slip on the structural capacity of the connection. An analytical design expression for predicting pull-out capacity is proposed and the results have been compared with some established design equations. It was found that pull-out load increased approximately linearly with the bonded length, up to maximum which occurred at a bonded length of 15 times the hole diameter, and did not increase beyond this bonded length. The most signi?cant failure modes were failure at the timber/adhesive interface followed by pullout of the BFRP rod. Increased bonded lengths resulted in higher bond slip values compared to lower equivalent bonded lengths. The proposed design model gave the best predictions of pull-out capacity compared with other existing models.
Resumo:
The design of composite asymmetric cellular beams is not fully covered by existing guidance but is an area of important practical application. Asymmetry in the shape of the cross-section of cellular beams causes development of additional bending moments in the web-posts between closely placed openings. Furthermore, the development of local composite action influences the distribution of forces in the web-flange Tees. The design method presented in this paper takes account of high degrees of asymmetry in the cross-section and also the influence of elongated or rectangular openings.
Resumo:
The results of 82 web crippling tests are presented, with 20 tests conducted on channel sections without web openings and 62 tests conducted on channel sections with web openings. The tests consider both end-two-flange and interior-two-flange loading conditions. In the case of the tests with web openings, the hole was located directly under the concentrated load. The concentrated load was applied through bearing plates; the effect of different bearing lengths is investigated. In addition, the cases of both flanges fastened and unfastened to the support is considered. A non-linear elasto-plastic finite element model is described, and the results compared against the laboratory test results; a good agreement was obtained in terms of both strength and failure modes.
Resumo:
A parametric study of cold-formed steel sections with web openings subjected to web crippling was undertaken using finite element analysis, to investigate the effects of web holes and cross-section sizes on the web crippling strengths of channel sections subjected to web crippling under both interior-two-flange (ITF) and end-two-flange (ETF) loading conditions. In both loading conditions, the hole was centred beneath the bearing plate. It was demonstrated that the main factors influencing the web crippling strength are the ratio of the hole depth to the flat depth of the web, and the ratio of the length of bearing plates to the flat depth of the web. In this paper, design recommendations in the form of web crippling strength reduction factors are proposed, that are conservative to both the experimental and finite element results.