157 resultados para Oilseed products
Resumo:
This paper investigates the influence of three fundamentally different durability enhancing products, viz. microsilica, controlled permeability formwork and silane, on some of the physical proper ties of near surface concrete. Microsilica (silica fume) is a pozzolan, controlled permeability formwork (CPF) is used to provide a free draining surface to a concrete form, while silane is a surface treatment applied to hardened concrete to reduce the ingress of water. Comparisons are made between the products when used individually and used in conjunction with each other, with a view to assessing whether the use of combinations of products may be desirable to improve the durability of concrete in certain circumstances. The effect of these materials on various durability parameters, such as freeze-thaw deterioration, carbonation resistance and chloride ingress, is considered in terms of their effect on permeation properties and surface strength. The results indicated that a combination of silane and CPF produces concrete with very low air permeability and sorptivity values. The influence of microsilica was more pronounced in increasing the surface strength of concrete.
Resumo:
A study undertaken at the University of Liverpool has investigated the potential for using construction and demolition waste (C&DW) as aggregate in the manufacture of a range of precast concrete products, i.e. building and paving blocks and pavement flags. Phase II, which is reported here, investigated concrete paving blocks. Recycled demolition aggregate can be used to replace newly quarried limestone aggregate, usually used in coarse (6 mm) and fine (4 mm-to-dust) gradings. The first objective, as was the case with concrete building blocks, was to replicate the process used by industry in fabricating concrete paving blocks in the laboratory. The compaction technique used involved vibration and pressure at the same time, i.e. a vibro-compaction technique. An electric hammer used previously for building blocks was not sufficient for adequate compaction of paving blocks. Adequate compaction could only be achieved by using the electric hammer while the specimens were on a vibrating table. The experimental work involved two main series of tests, i.e. paving blocks made with concrete- and masonry-derived aggregate. Variables that were investigated were level of replacement of (a) coarse aggregate only, (b) fine aggregate only, and (c) both coarse and fine aggregate. Investigation of mechanical properties, i.e. compressive and tensile splitting strength, of paving blocks made with recycled demolition aggregate determined levels of replacement which produced similar mechanical properties to paving blocks made with newly quarried aggregates. This had to be achieved without an increase in the cement content. The results from this research programme indicate that recycled demolition aggregate can be used for this new higher value market and therefore may encourage demolition contractors to develop crushing and screening facilities for this. (C) 2011 Published by Elsevier Ltd.
Resumo:
A study undertaken at the University of Liverpool has investigated the potential for using construction and demolition waste (C&DW) derived aggregate in the manufacture of a range of precast concrete products, i.e. building and paving blocks and pavement flags. Phase III, which is reported here, investigated
concrete pavement flags. This was subsequent to studies on building and paving blocks. Recycled demolition aggregate can be used to replace newly quarried limestone aggregate, usually used in coarse (6 mm) and fine (4 mm-to-dust) gradings. The first objective was, as was the case with concrete building
and paving blocks, to replicate the process used by industry in fabricating concrete pavement flags in the laboratory. The ‘‘wet’’ casting technique used by industry for making concrete flags requires a very workable mix so that the concrete flows into the mould before it is compressed. Compression squeezes out water from the top as well as the bottom of the mould. This industrial casting procedure was successfully replicated in the laboratory by using an appropriately modified cube crushing machine and a special mould typical of what is used by industry. The mould could be filled outside of the cube crushing machine and then rolled onto a steel frame and into the machine for it to be compressed. The texture and mechanical properties of the laboratory concrete flags were found to be similar to the factory ones. The experimental work involved two main series of tests, i.e. concrete flags made with concrete- and
masonry-derived aggregate. Investigation of flexural strength was required for concrete paving flags. This is different from building blocks and paving blocks which required compressive and tensile splitting strength respectively. Upper levels of replacement with recycled demolition aggregate were determined
that produced similar flexural strength to paving flags made with newly quarried aggregates, without requiring an increase in the cement content. With up to 60% of the coarse or 40% of the fine fractions replaced with concrete-derived aggregates, the target mean flexural strength of 5.0 N/mm2 was still
achieved at the age of 28 days. There was similar detrimental effect by incorporating the fine masonry-derived aggregate. A replacement level of 70% for coarse was found to be satisfactory and also conservative. However, the fine fraction replacement could only be up to 30% and even reduced to 15% when used for mixes where 60% of the coarse fraction was also masonry-derived aggregate.