164 resultados para Oil removal
Resumo:
For over 50 years bridge plugs and cement have been used for well abandonment and work over and are still the material of choice. However the failures of cement abandonments using bridge plugs has been reported on many occasions, some of which have resulted in fatal consequences. A new patented product is designed to address the shortcomings associated with using bridge plugs and cement. The new developed tools use an alloy based on bismuth that is melted in situ using Thermite reaction. The tool uses the expansion properties of bismuth to seal the well. Testing the new technology in real field under more than 2 km deep sea water can be expensive. Virtual simulation of the new device under simulated thermal and mechanical environment can be achieved using nonlinear finite element method to validate the product and reduce cost. Experimental testing in the lab is performed to measure heat generated due to thermite reaction. Then, a sequential thermal mechanical explicit/implicit finite element solver is used to simulate the device under both testing lab and deep water conditions.
Resumo:
We describe and analyse the operation and stabilization of a Mach--Zehnder interferometer, which separates the carrier and the first-order sidebands of a phase-modulated laser field, and which is locked using the H\"ansch--Couillaud method. In addition to the necessary attenuation, our interferometer introduces, via total internal reflection, a significant polarization-dependent phase delay. We employ a general treatment to describe an interferometer with an object which affects the field along one path, and we examine how this phase delay affects the error signal. We discuss the requirements necessary to ensure the lock point remains unchanged when phase modulation is introduced, and we demonstrate and characterize this locking experimentally. Finally, we suggest an extension to this locking strategy using heterodyne detection.
Resumo:
Artifact removal from physiological signals is an essential component of the biosignal processing pipeline. The need for powerful and robust methods for this process has become particularly acute as healthcare technology deployment undergoes transition from the current hospital-centric setting toward a wearable and ubiquitous monitoring environment. Currently, determining the relative efficacy and performance of the multiple artifact removal techniques available on real world data can be problematic, due to incomplete information on the uncorrupted desired signal. The majority of techniques are presently evaluated using simulated data, and therefore, the quality of the conclusions is contingent on the fidelity of the model used. Consequently, in the biomedical signal processing community, there is considerable focus on the generation and validation of appropriate signal models for use in artifact suppression. Most approaches rely on mathematical models which capture suitable approximations to the signal dynamics or underlying physiology and, therefore, introduce some uncertainty to subsequent predictions of algorithm performance. This paper describes a more empirical approach to the modeling of the desired signal that we demonstrate for functional brain monitoring tasks which allows for the procurement of a ground truth signal which is highly correlated to a true desired signal that has been contaminated with artifacts. The availability of this ground truth, together with the corrupted signal, can then aid in determining the efficacy of selected artifact removal techniques. A number of commonly implemented artifact removal techniques were evaluated using the described methodology to validate the proposed novel test platform. © 2012 IEEE.
Resumo:
It has been suggested that there are significant overlaps between removals due to deregistration and removals arising because patients live outside the practice area. If this is true, it would mean that the current estimates of deregistration would need to be revised upwards. All outside-area removals for the calendar years 2001 and 2002 were reviewed and characterised by age, sex and Jarman score of the enumeration district of the patients' residence and distance from the practice. The average outside-area removal rate was just over one removal per practice per year. Removal rates were highest between the ages of 18 and 44 years; there were no significant differences between the sexes. Rates of removal increased exponentially with distance, although even at marked distances from the practice there were about 10 patients remaining on the list for each one removed. Residents in deprived areas were more likely to be removed, although because areas most distal to the practice tend to be affluent, overall there was a predominance of affluent patients among those who are removed. In Northern Ireland rates of outside-area removal are only slightly higher than those of deregistration. It is evident that GPs are exercising some discretion as to which of the outside-area patients they retain on their list. This has the potential to cause some misunderstanding and resentment among patients, as has been reported previously.