206 resultados para Neural Conduction


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report on chevrons (herringbonelike patterns) observed in homeotropically aligned liquid crystals with high electric conductivity. We focus our attention on two types of chevrons observed in the conduction regime. The threshold voltage and the characteristic double periodicity of chevrons (i.e., the short wavelength lambda(1) of the striated rolls and the long wavelength lambda(2) Of the chevron bands) have been measured as functions of the applied electric frequency f. With the aid of a crossed polarizer set, we have, in addition, determined the director field which shows a periodic in-plane rotation for our chevrons (with a wavelength lambda(2)) We arrived at the types of chevrons after qualitatively different bifurcation sequences with increasing voltage. The frequency dependence of lambda(2) also shows a qualitatively different behavior with respect to the two types of chevrons. The experimental results are discussed in terms of recent theoretical investigations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A significant part of the literature on input-output (IO) analysis is dedicated to the development and application of methodologies forecasting and updating technology coefficients and multipliers. Prominent among such techniques is the RAS method, while more information demanding econometric methods, as well as other less promising ones, have been proposed. However, there has been little interest expressed in the use of more modern and often more innovative methods, such as neural networks in IO analysis in general. This study constructs, proposes and applies a Backpropagation Neural Network (BPN) with the purpose of forecasting IO technology coefficients and subsequently multipliers. The RAS method is also applied on the same set of UK IO tables, and the discussion of results of both methods is accompanied by a comparative analysis. The results show that the BPN offers a valid alternative way of IO technology forecasting and many forecasts were more accurate using this method. Overall, however, the RAS method outperformed the BPN but the difference is rather small to be systematic and there are further ways to improve the performance of the BPN.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chronic use of chloroquine has been shown to induce numerous pathophysiological defects in the retina. This drug has the ability to alter pH of intracellular compartments and lysosomal function of the retinal pigment epithelium (RPE) and retinal neurons may constitute the basis of chloroquine retinopathy. The aim of the current study was to investigate pathogenic alterations in retinal cells continuously exposed to chloroquine using appropriate in vivo and in vitro models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present paper demonstrates the suitability of artificial neural network (ANN) for modelling of a FinFET in nano-circuit simulation. The FinFET used in this work is designed using careful engineering of source-drain extension, which simultaneously improves maximum frequency of oscillation f(max) because of lower gate to drain capacitance, and intrinsic gain A(V0) = g(m)/g(ds), due to lower output conductance g(ds). The framework for the ANN-based FinFET model is a common source equivalent circuit, where the dependence of intrinsic capacitances, resistances and dc drain current I-d on drain-source V-ds and gate-source V-gs is derived by a simple two-layered neural network architecture. All extrinsic components of the FinFET model are treated as bias independent. The model was implemented in a circuit simulator and verified by its ability to generate accurate response to excitations not used during training. The model was used to design a low-noise amplifier. At low power (J(ds) similar to 10 mu A/mu m) improvement was observed in both third-order-intercept IIP3 (similar to 10 dBm) and intrinsic gain A(V0) (similar to 20 dB), compared to a comparable bulk MOSFET with similar effective channel length. This is attributed to higher ratio of first-order to third-order derivative of I-d with respect to gate voltage and lower g(ds), in FinFET compared to bulk MOSFET. Copyright (C) 2009 John Wiley & Sons, Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel image segmentation method based on a constraint satisfaction neural network (CSNN) is presented. The new method uses CSNN-based relaxation but with a modified scanning scheme of the image. The pixels are visited with more distant intervals and wider neighborhoods in the first level of the algorithm. The intervals between pixels and their neighborhoods are reduced in the following stages of the algorithm. This method contributes to the formation of more regular segments rapidly and consistently. A cluster validity index to determine the number of segments is also added to complete the proposed method into a fully automatic unsupervised segmentation scheme. The results are compared quantitatively by means of a novel segmentation evaluation criterion. The results are promising.