177 resultados para Near-isogenic
Resumo:
In this paper, we address the problem of designing multirate codes for a multiple-input and multiple-output (MIMO) system by restricting the receiver to be a successive decoding and interference cancellation type, when each of the antennas is encoded independently. Furthermore, it is assumed that the receiver knows the instantaneous fading channel states but the transmitter does not have access to them. It is well known that, in theory, minimum-mean-square error (MMSE) based successive decoding of multiple access (in multi-user communications) and MIMO channels achieves the total channel capacity. However, for this scheme to perform optimally, the optimal rates of each antenna (per-antenna rates) must be known at the transmitter. We show that the optimal per-antenna rates at the transmitter can be estimated using only the statistical characteristics of the MIMO channel in time-varying Rayleigh MIMO channel environments. Based on the results, multirate codes are designed using punctured turbo codes for a horizontal coded MIMO system. Simulation results show performances within about one to two dBs of MIMO channel capacity.
Resumo:
The validity of load estimates from intermittent, instantaneous grab sampling is dependent on adequate spatial coverage by monitoring networks and a sampling frequency that re?ects the variability in the system under study. Catchments with a ?ashy hydrology due to surface runoff pose a particular challenge as intense short duration rainfall events may account for a signi?cant portion of the total diffuse transfer of pollution from soil to water in any hydrological year. This can also be exacerbated by the presence of strong background pollution signals from point sources during low flows. In this paper, a range of sampling methodologies and load estimation techniques are applied to phosphorus data from such a surface water dominated river system, instrumented at three sub-catchments (ranging from 3 to 5 km2 in area) with near-continuous monitoring stations. Systematic and Monte Carlo approaches were applied to simulate grab sampling using multiple strategies and to calculate an estimated load, Le based on established load estimation methods. Comparison with the actual load, Lt, revealed signi?cant average underestimation, of up to 60%, and high variability for all feasible sampling approaches. Further analysis of the time series provides an insight into these observations; revealing peak frequencies and power-law scaling in the distributions of P concentration, discharge and load associated with surface runoff and background transfers. Results indicate that only near-continuous monitoring that re?ects the rapid temporal changes in these river systems is adequate for comparative monitoring and evaluation purposes. While the implications of this analysis may be more tenable to small scale ?ashy systems, this represents an appropriate scale in terms of evaluating catchment mitigation strategies such as agri-environmental policies for managing diffuse P transfers in complex landscapes.
Resumo:
Gold nanoparticles (GNPs) are being proposed as contrast agents to enhance X-ray imaging and radiotherapy, seeking to take advantage of the increased X-ray absorption of gold compared to soft tissue. However, there is a great discrepancy between physically predicted increases in X-ray energy deposition and experimentally observed increases in cell killing. In this work, we present the first calculations which take into account the structure of energy deposition in the nanoscale vicinity of GNPs and relate this to biological outcomes, and show for the first time good agreement with experimentally observed cell killing by the combination of X-rays and GNPs. These results are not only relevant to radiotherapy, but also have implications for applications of heavy atom nanoparticles in biological settings or where human exposure is possible because the localised energy deposition high-lighted by these results may cause complex DNA damage, leading to mutation and carcinogenesis.
Resumo:
A detailed investigation on planar two dimensional metallodielectric dipole arrays with enhanced near-fields for sensing applications was carried out. Two approaches for enhancing the near-fields and increasing the quality factor were studied. The reactive power stored in the vicinity of the array at resonance increases rapidly with increasing periodicity. Higher quality factors are produced as a result. The excitation of the odd mode in the presence of a perturbation gives rise to a sharp resonance with near-field enhanced by at least an order of magnitude compared to unperturbed arrays. The trade-off between near-field enhancement and thermal losses was also studied, and the effect of supporting dielectric layers on thermal losses and quality factors were examined. Secondary transmissions due to the dielectric alone were found to enhance and reduce cyclically the quality factor as a function of the thickness of the dielectric material. The performance of a perturbed frequency selective surface in sensing nearby materials was investigated. Finally, unperturbed and perturbed arrays working at infrared frequencies were demonstrated experimentally. (C) 2011 Society of Photo-Optical Instrumentation Engineers (SPIE). [DOI: 10.1117/1.3604785]
Resumo:
Time-resolved resonance Raman spectroscopy of the lowest energy excited state of the 4,4'-bipyridyl ligand-bridged complex, [(CO)(5)W(L)W(CO5] (1), and Raman spectroscopy of electrochemically reduced 1, both give bands characteristic of the the L(.-) species. This confirms that the ligand L is negatively charged in the lowest energy exicited state which is therefore metal-ligand charge transfer (MLCT) in character. Raman spectra of the radical anion of 1 excited in the far red (800 nm) exhibited a band near 2050 cm(-1) due to a vco symmetric CO stretching mode, compared to the corresponding band at 2070 cm(-1) in the spectrum of the parent, uncharged complex. The lower vco in the reduced complex supports the recent finding by time-resolved IR spectroscopy of a similar frequency decrease for nu(CO) in the longest lived (MLCT) excited state of 1 which was attributed to electron/hole localisation in this state on the IR time scale.
Resumo:
Near-infrared diffuse tomography was used in order to observe dynamic behaviour of flowing gases by measuring the 3D distributions of composition and temperature in a weakly scattering packed bed reactor, subject to wall effects and non-isothermal conditions. The technique was applied to the vapour phase hydrogen isotopic exchange reaction in a hydrophobic packing of low aspect ratio made of platinum on styrene divinyl benzene sulphonate copolymer resin. The results of tomography revealed uneven temperature and composition maps of water and deuterated water vapours in the core-packed bed and in the vicinity of the wall owing to flow maldistribution. The dynamic lag between the near-wall water vapour and deuterated water vapour compositions were observed suggesting that the convective transfer which was significant near the wall at the start, owing to high porosity, was also effective at large conversions.
Resumo:
Many previous studies into internal temperature gradients within stone have assumed smooth, exponential increases and decreases in sub-surface temperatures in response, for example, to diurnal patterns of heating and cooling and these have been used to explain phenomena such as large-scale contour scaling. This high-resolution experimental study, in which a porous limestone block was subjected to alternate surface heating and cooling using an infrared lamp, demonstrates that internal temperature gradients in response to short-term environmental cycles (measured in minutes) can in fact be complex and inconsistent. Results confirm the significance of very steep temperature/stress gradients within the outer 10 mm or less of exposed stone. Below this the data indicate complex patterns of temperature reversals, the amplitudes of which are attenuated with depth and which are influenced in their intensity and location by variations in the relative duration of heating and cooling phases. It is suggested that the reversals might represent ‘interference patterns’ between incoming and outgoing thermal waves, but whatever their origin they are potentially important because they occur within the zone in which many stone decay processes, especially salt weathering, operate. These processes invariably respond to temperature and moisture fluctuations, and short-term interruptions to insolation could, for example, trigger these fluctuations on numerous occasions over a day. In particular, the reversals occur at a scale that is commensurate with decay by multiple flaking and could indicate an underlying control on this previously little-researched pattern of weathering. In the context of this publication, however, the main lesson to be learned from this study is that differing scales of behaviour require different scales of enquiry.
Resumo:
We report the discovery of WASP-34b, a sub-Jupiter-mass exoplanet transiting its 10.4-magnitude solar-type host star (1SWASP J110135.89-235138.4; TYC 6636-540-1) every 4.3177 days in a slightly eccentric orbit (e = 0.038±0.012). We find a planetary mass of 0.59±0.01 MJup and radius of 1.22-0.08+0.11 RJup. There is a linear trend in the radial velocities of 55±4 m s-1 y-1 indicating the presence of a long-period third body in the system with a mass ?0.45 MJup at a distance of ?1.2 AU from the host star. This third-body is either a low-mass star, a white dwarf, or another planet. The transit depth ((RP/Rstar)2 = 0.0126) and high impact parameter (b = 0.90) suggest that this could be the first known transiting exoplanet expected to undergo grazing transits, but with a confidence of only 80%. Radial velocity and photometric data are only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/526/A130