180 resultados para NUCLEOPHILIC-SUBSTITUTION REACTIONS
Resumo:
Substituted phenols undergo a facile Rh carbenoid-mediated O-H insertion reaction with (EtO)2P(O)C(:N2)CO2R (I; R = Et, Me) to give 44-86% 2-aryloxyphosphonoacetates II (R1 = e.g., H, 4-Me, 4-Cl, 2-OH, 4-PhCH2O). Phenols contg. strongly electron withdrawing groups, bulky ortho-substituents or certain ortho-heteroatom substituents show reduced or variable yields. Catechol affords a mono-adduct which cyclizes to lactate III. Aniline inserts preferentially and exclusively over phenol in a competition reaction with I (R = Et) to give (EtO)2P(O)CH(NHPh)CO2Et. II are versatile intermediates in a prepn. of 2-aryloxy-3-phenylpropenoates IV by Wadsworth-Emmons reaction with benzaldehydes R2C6H4CHO (R2 = PhCH2O, 2-Cl, H). Dissolving Mg metal redn. provides a mild method for the conversion of propenoates IV into the corresponding propanoates.
Resumo:
Rhodium(II) carboxylate catalyzed decompn. of diazo esters 3 (shown as I) and PhCH2C(CO2Et)N2 4 in the presence of alcs. or water results in formation of 2-alkoxy- or 2-hydroxy-3-arylpropanoates, resp., by O-H insertion in competition with cinnamates by elimination; the ratio of insertion to elimination is dramatically affected by the carboxylate ligand on rhodium. Use of methanol-d as the alc. confirms that the alkene does not arise by elimination from the initial alkoxyester product.
Resumo:
Enantiopure cis-dihydro-1,2-diol metabolites, obtained from toluene dioxygenase-catalysed cis-dihydroxylation of six monosubstituted benzene substrates, have been converted to their corresponding cis-hexahydro-12-diol derivatives by catalytic hydrogenation via their cis-tetrahydro-1,2-diol intermediates. Optimal reaction conditions for total catalytic hydrogenation of the cis-dihydro-1,2-diols have been established using six heterogeneous catalysts. The relative and absolute configurations of the resulting benzene cis-hexahydro-1,2-diol products have been unequivocally established by X-ray crystallography and NMR spectroscopy. Methods have been developed to obtain enantiopure cis-hexahydro-1,2-diol diastereoisomers, to desymmetrise a meso-cis-hexahydro-1,2-diol and to synthesise 2-substituted cyclohexanols. The potential of these enantiopure cyclohexanols as chiral reagents was briefly evaluated through their application in the synthesis of two enantiomerically enriched phosphine oxides from the corresponding racemic phosphine precursors.
Resumo:
A thermodynamic analysis of the experimental conditions of the Beckmann rearrangement reaction of oximes into amides has been undertaken to examine whether the reaction is under thermodynamic or kinetic control. To answer this question, the thermodynamic properties of the typical Beckmann rearrangement reactions in the ideal gaseous state-cyclohexanone oxime to caprolactam and 2-butanone oxime to N-methylpropanarnide-were studied by using the quantum mechanical method. Gibbs energy and equilibrium constants of the Beckmann rearrangement have been assessed in the gaseous and the liquid phases. Results of the thermodynamic analysis have shown that Beckmann rearrange ments are kinetically controlled. Thus, a search for possible active ionic liquid based catalysts for the mild reaction conditions has been performed.
Resumo:
Monolithic catalysts are widely used as structured catalysts, especially in the abatement of pollutants. Probing what happens inside these monoliths during operation is, therefore, vital for modelling and prediction of the catalyst behavior. SpaciMS is a spatially resolved capillary-inlet mass spectroscopy system allowing for the generation of spatially resolved maps of the reactions within monoliths. In this study SpaciMS results combined with 3D CFD modelling demonstrate that SpaciMS is a highly sensitive and minimally invasive technique that can provide reaction maps as well as catalytic temporal behavior. Herein we illustrate this by examining kinetic oscillations during a CO oxidation reaction over a Pt/Rh on alumina catalyst supported on a cordierite monolith. These oscillations were only observed within the monolith by SpaciMS between 30 and 90% CO conversion. Equivalent experiments performed in a plug-flow reactor using this catalyst in a crushed form over a similar range of reaction conditions did not display any oscillations demonstrating the importance of intra monolith analysis. This work demonstrates that the SpaciMS offers an accurate and comprehensive picture of structured catalysts under operation.
Resumo:
A series of bis(oxazoline) metal(II) complexes has been supported on silica and carbon supports by non-covalent immobilisation using an ionic liquid. The catalytic performance of these solids was compared for the enantioselective Diels-Alder reaction between N-acryloyloxazolidinone and cyclopentadiene and the Mukaiyama-aldol reaction between methyl pyruvate and 1-methoxy-1-trimethylsilyloxy-propene. In both reactions the enantioselectivity was strongly influenced by the choice of support displaying enantioselectivies (ee values) up to 40% higher than those conducted under homogeneous reaction conditions.
Resumo:
Cationic dyes, such as methylene blue (MB), Thionine (TH) and Basic Fuschin (BF), but not anionic dyes, such as Acid Orange 7 (AO7), Acid Blue 9 (AB9) and Acid Fuschin (AF), are readily adsorbed onto mesoporous titania films at high pH (pH 11), i.e. well above the pzc of titania (pH 6.5), due to electrostatic forces of attraction and repulsion, respectively. The same anionic dyes, but not the cationic dyes, are readily adsorbed on the same titania films at low pH (pH 3), i.e. well below titania's pzc. MB appears to adsorb on mesoporous titania films at pH 11 as the trimer (lambda(max) = 570 nm) but, upon drying, although the trimer still dominates, there is an absorption peak at 665 nm, especially notable at low [MB], which may be due to the monomer, but more likely MB J-aggregates. In contrast, the absorption spectrum of AO7 adsorbed onto the mesoporous titania film at low pH is very similar to the dye monomer. For both MB and AO7 the kinetics of adsorption are first order and yield high rate constants (3.71 and 1.481 g(-1) min(-1)), indicative of a strong adsorption process. Indeed, both MB and AO7 stained films retained much of their colour when left overnight in dye-free pH 11 and 3 solutions, respectively, indicating the strong nature of the adsorption. The kinetics of the photocatalytic bleaching of the MB-titania films at high pH are complex and not well-described by the Julson-Ollis kinetic model [A.J. Julson, D.F. Ollis, Appl. Catal. B. 65 (2006) 315]. Instead, there appears to be an initial fast but not simple demethylation step, followed by a zero-order bleaching and further demethylation steps. In contrast, the kinetics of photocatalytic bleaching of the AO7-titania film give a good fit to the Julson-Ollis kinetic model, yielding values for the various fitting parameters not too dissimilar to those reported for AO7 adsorbed on P25 titania powder. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Strategies to produce an ultracold sample of carbon atoms are explored and assessed with the help of quantum chemistry. After a brief discussion of the experimental difficulties using conventional methods, two strategies are investigated. The first attempts to exploit charge exchange reactions between ultracold metal atoms and sympathetically cooled C+ ions. Ab initio calculations including electron correlation have been conducted on the molecular ions [LiC]+ and [BeC]+ to determine whether alkali or alkaline earth metals are a suitable buffer gas for the formation of C atoms but strong spontaneous radiative charge exchange ensure they are not ideal. The second technique involves the stimulated production of ultracold C atoms from a gas of laser cooled carbides. Calculations on LiC suggest that the alkali carbides are not suitable but the CH radical is a possible laser cooling candidate thanks to very favourable Frank-Condon factors. A scheme based on a four pulse STIRAP excitation pathway to a Feshbach resonance is outlined for the production of atomic fragments with near zero centre of mass velocity.
Resumo:
The transmetalation reaction of the aryllithium compound [Li(NCN)](2) (NCN is the monoanionic
Resumo:
Galactokinase catalyses the phosphorylation of galactose at the expense of ATP. Like other members of the GHMP family of kinases it is postulated to function through an active site base mechanism in which Asp-186 abstracts a proton from galactose. This asparate residue was altered to alanine and to asparagine by site-directed mutagenesis of the corresponding gene. This resulted in variant enzyme with no detectable galactokinase activity. Alteration of Arg-37, which lies adjacent to Asp-186 and is postulated to assist the catalytic base, to lysine resulted in an active enzyme. However, alteration of this residue to glutamate abolished activity. All the variant enzymes, except the arginine to lysine substitution, were structurally unstable (as judged by native gel electrophoresis in the presence of urea) compared to the wild type. This suggests that the lack of activity results from this structural instability, in addition to any direct effects on the catalytic mechanism. Computational estimations of the pK(a) values of the arginine and aspartate residues, suggest that Arg-37 remains protonated throughout the catalytic cycle whereas Asp-186 has an abnormally high pK(a) value (7.18). Quantum mechanics/molecular mechanics (QM/MM) calculations suggest that Asp-186 moves closer to the galactose molecule during catalysis. The experimental and theoretical studies presented here argue for a mechanism in which the C-1-OH bond in the sugar is weakened by the presence of Asp-186 thus facilitating nucleophilic attack by the oxygen atom on the gamma-phosphorus of ATP.
Resumo:
Recent experiments on rapid neutral-neutral reactions involving the radical CN at low temperature and the neutral C atom at room temperature suggest that atom-neutral and radical-neutral reactions may be generally more rapid at low temperature than hitherto thought. We have included a variety of rapid neutral-neutral reactions in our gas-phase chemical models of quiescent, dense interstellar clouds. We find the calculated abundances of many molecules to be greatly changed from previous values. In particular, the peak 'early-time' abundances of organic molecules are reduced.
Resumo:
We present the rate coefficients of 2880 gas-phase reactions among 313 species involving 12 elements for use in astrochemical models. We describe the motivation behind this work and the caveats which attach to the data in general as well as to specific reactions. We give the permanent electric dipole moments of nearly all the 112 neutral molecules contained in the data set, so that rate coefficients can be calculated at the low temperatures of dark interstellar dust clouds. We have used the data to calculate the pseudo-time-dependent chemical evolution of a dark, dense interstellar cloud and present both early time and steady-state abundances for all 313 species.