154 resultados para NOx adsorption
Resumo:
A happy medium: Volumetric adsorption of carbon monoxide at 308 K and UHR-HAADF-STEM, HREM, and computer modeling techniques were compared. Experimental CO/Au ratios at saturation coverage for two supported gold catalysts were shown to fit very well the predictions of a nanostructural model that considers CO adsorption on gold sites with coordination numbers of less than eight.
Resumo:
Particulate colloids often occur together with proteins in sewage-impacted water. Using Bovine Serum Albumin (BSA) as a surrogate for protein in sewage, column experiments investigating the capacity of iron-oxide coated sands to remove latex microspheres from water revealed that microsphere attenuation mechanisms depended on antecedent BSA coverage. Dual pulse experiment (DPE) results suggested that where all BSA was adsorbed, subsequent multiple pore volume microsphere breakthrough curves reflected progressively reduced colloid deposition rates with increasing adsorbed BSA content. Modelling colloid responses suggested adsorption of 1 µg BSA generated the same response as blockage by between 7.1x108 and 2.3x109 deposited microspheres. By contrast, microsphere responses in DPEs where BSA coverage of the deposition sites approached/ reached saturation revealed the coated sand maintained a finite capacity to attenuate microspheres, even when incapable of further BSA adsorption. Subsequent microsphere breakthrough curves demonstrated the matrix’s colloid attenuation capacity progressively increased with continued microsphere deposition. Experimental findings suggested BSA adsorption on the sand surface approaching/ reaching saturation generated attractive deposition sites for colloids, which became progressively more attractive with further colloid deposition (filter ripening). Results demonstrate that adsorption of a single type of protein may either enhance or inhibit colloid mobility in saturated porous media.
Resumo:
The observed adsorption of acid orange 7, AO7(-), on P25 titania over a range of pH values (pH 2-8) gives a good fit to data generated using a charge distribution, multisite complexation, i.e. CD-MUSIC, model, modified for aggregated dye adsorption. For this system the model predicts that both the apparent dark Langmuir adsorption constant. K-L, and the number of adsorption sites, n(o), increase with decreasing pH, and are negligible above pH 6. At pH 2 the CD-MUSIC model predicts the fraction of singly co-ordinated sites occupied by the dye,f(AO7), is ca. 32% under the in situ monitoring experimental conditions used in this work to study the photocatalytic bleaching of AO7(-) under UV light illumination ([TiO2] = 20 mgdm(-3); [AO7(-)](total) = 4.86 x 10(-5) M). Although AO7(-) adsorption on P25 titania is insignificant above pH 6 and increases almost linearly and markedly below this pH, the measured initial rate of bleaching of AO7(-), photocatalysed by titania using UV appears to only increase modestly (
Resumo:
The chromium bearing wastewater in this study was used to simulate the low concentration discharge from a major aerospace manufacturing facility in the UK. Removal of chromium ions from aqueous solutions using raw dolomite was achieved using batch adsorption experiments. The effect of; initial Cr(VI) concentration, amount of adsorbent, solution temperature, dolomite particle size and shaking speed was studied. Maximum chromium removal was found at pH 2.0. A kinetic study yielded an optimum equilibrium time of 96 h with an adsorbent dose of 1 g/L Sorption studies were conducted over a concentration range of 5-50 mg/L Cr(VI) removal decreased with an increase in temperature (q(max): 20 degrees C = 10.01 mg/g; 30 degrees C = 8.385 mg/g; 40 degrees C = 6.654 mg/g; and 60 degrees C = 5.669 mg/g). Results suggest that the equilibrium adsorption was described by the Freundlich model. The kinetic processes of Cr(VI) adsorption onto dolomite were described in order to provide a more clear interpretation of the adsorption rate and uptake mechanism. The overall kinetic data was acceptably explained by a pseudo first-order rate model. Evaluated Delta G degrees and Delta H degrees specify the spontaneous and exothermic nature of the reaction. The adsorption takes place with a decrease in entropy (Delta S degrees is negative). (C) 2011 Elsevier B.V. All rights reserved.