102 resultados para NICKEL COMPOUNDS - Pressure Effects
Thermomechanical analyses of ultrasonic welding process using thermal and acoustic softening effects
Resumo:
Ultrasonic welding process is a rapid manufacturing process used to weld thin layers of metal at low temperatures and low energy consumption. Experimental results have shown that ultrasonic welding is a combination of both surface (friction) and volume (plasticity) softening effects. In the presented work, a very first attempt has been made to simulate the ultrasonic welding of metals by taking into account both of these effects (surface and volume). A phenomenological material model has been proposed which incorporates these two effects (i.e. surface and volume). The thermal softening due to friction and ultrasonic (acoustic) softening has been included in the proposed material model. For surface effects a friction law with variable coefficient of friction dependent upon contact pressure, slip, temperature and number of cycles has been derived from experimental friction tests. Thermomechanical analyses of ultrasonic welding of aluminium alloy have been performed. The effects of ultrasonic welding process parameters, such as applied load, amplitude of ultrasonic vibration, and velocity of welding sonotrode on the friction work at the weld interface are being analyzed. The change in the friction work at the weld interface has been explained on the basis of softening (thermal and acoustic) of the specimen during the ultrasonic welding process. In the end, a comparison between experimental and simulated results has been presented showing a good agreement. © 2008 Elsevier Ltd. All rights reserved.
Resumo:
The incorporation of active pharmaceutical ingredients (APIs) into multicomponent solid forms (such as salts and co-crystals) or liquid forms (such as ionic liquids (ILs) or deep eutectic mixtures) is important in optimizing the efficacy and delivery of APIs. However, there is a current debate regarding the classification of these multicomponent systems based on their ionicity which could interfere with their consideration in important applications. Multicomponent systems of intermediate ionicity can show a combination of properties, leading to behavior that is neither strictly typical of either purely ionic or purely neutral compounds, nor easily described as intermediate between the two. In this perspective, we attempt to illustrate the problems in classifying multicomponent APIs based on one of two categories by discussing selected literature regarding solid and liquid multicomponent APIs and presenting the crystal structures of some relevant systems as case studies. It is clear that a focus on restrictive nomenclature carries with it the risk that a thorough examination of the physicochemical properties of the compounds will be overlooked.
Resumo:
Atmospheric pressure non-thermal plasma (APNTP) has been gaining increasing interest as a new alternative antibacterial approach. Although this approach has demonstrated promising antibacterial activity, its exact mechanism of action remains unclear. Mechanistic elucidation of the antimicrobial activity will facilitate development and rational optimisation of this approach for potential medical applications. In this study, the antibacterial efficacy of an in-house-built APNTP jet was evaluated alongside an investigation of the interactions between APNTP and major cellular components in order to identify the potential cellular targets involved in plasma-mediated bacterial destruction mechanisms. The investigated plasma jet exhibited excellent, rapid antibacterial activity against a selected panel of clinically significant bacterial species including Bacillus cereus, meticillin-resistant Staphylococcus aureus (MRSA), Escherichia coli and Pseudomonas aeruginosa, all of which were completely inactivated within 2 min of plasma exposure. Plasma-mediated damaging effects were observed, to varying degrees, on all of the investigated cellular components including DNA, a model protein enzyme, and lipid membrane integrity and permeability. The antibacterial efficacy of APNTP appears to involve a multiple-target mechanism, which potentially reduces the likelihood of emergence of microbial resistance towards this promising antimicrobial approach. However, cellular membrane damage and resulting permeability perturbation was found to be the most likely rate-determining step in this mechanism. Crown Copyright © 2013.
Resumo:
Objectives: There is great urgency for alternate sources of antibiotics to be identified. One relatively untapped source of novel bioproducts, including antimicrobials, is organisms derived from extreme environments. Halophiles (which require high salt concentrations) are one such group which is being increasingly explored for their biotechnological potential. The aim of this study was to identify halophilic environmental isolates which possessed in vitro and in vivo antimicrobial and antibiofilm activities. Methods: 73 halophilic bacteria and archaea were isolated from Kilroot salt mine in Northern Ireland. Culture extracts of each isolate were screened for antimicrobial and antibiofilm activity against numerous pathogenic bacteria, including Staphylococcus species and Pseudomonas aeruginosa, both model strains and clinical isolates. The methods used included disc diffusion assays of crude extracts, MIC screening, the MBEC assay, and an in vivo model based on the Greater Wax Moth (Galleria mellonella). Results: The assays indicated >50% of extracts displayed antimicrobial and antibiofilm activity against at least one pathogen, the majority being Staphylococcus species, but also E. coli and P. aeruginosa. Biofilms were either reduced or eradicated by halophile extracts when tested with the MBEC device. Further experiments demonstrated that these effects could be replicated in vivo, with extracts reducing the severity of infections and enhancing the survival of infected G. mellonella. Conclusions: The importance of extremophiles to pharmaceutical research should not be underestimated. While not yet fully characterised, based on the data obtained, the halophiles isolated during this study may provide a promising reservoir of novel antimicrobial and antibiofilm compounds.
Resumo:
We unravel the complex chemistry in both the neutral and ionic systems of a radio-frequency-driven atmospheric-pressure plasma in a helium-oxygen mixture (He-0.5% O) with air impurity levels from 0 to 500 ppm of relative humidity from 0% to 100% using a zero-dimensional, time-dependent global model. Effects of humid air impurity on absolute densities and the dominant production and destruction pathways of biologically relevant reactive neutral species are clarified. A few hundred ppm of air impurity crucially changes the plasma from a simple oxygen-dependent plasma to a complex oxygen-nitrogen-hydrogen plasma. The density of reactive oxygen species decreases from 10 to 10 cm, which in turn results in a decrease in the overall chemical reactivity. Reactive nitrogen species (10 cm ), atomic hydrogen and hydroxyl radicals (10-10 cm) are generated in the plasma. With 500 ppm of humid air impurity, the densities of positively charged ions and negatively charged ions slightly increase and the electron density slightly decreases (to the order of 10 cm). The electronegativity increases up to 2.3 compared with 1.5 without air admixture. Atomic hydrogen, hydroxyl radicals and oxygen ions significantly contribute to the production and destruction of reactive oxygen and reactive nitrogen species. © 2013 IOP Publishing Ltd.
Resumo:
In most applications helium-based plasma jets operate in an open-air environment. The presence of humid air in the plasma jet will influence the plasma chemistry and can lead to the production of a broader range of reactive species. We explore the influence of humid air on the reactive species in radio frequency (rf)-driven atmospheric-pressure helium-oxygen mixture plasmas (He-O, helium with 5000 ppm admixture of oxygen) for wide air impurity levels of 0-500 ppm with relative humidities of from 0% to 100% using a zero-dimensional, time-dependent global model. Comparisons are made with experimental measurements in an rf-driven micro-scale atmospheric pressure plasma jet and with one-dimensional semi-kinetic simulations of the same plasma jet. These suggest that the plausible air impurity level is not more than hundreds of ppm in such systems. The evolution of species concentration is described for reactive oxygen species, metastable species, radical species and positively and negatively charged ions (and their clusters). Effects of the air impurity containing water humidity on electronegativity and overall plasma reactivity are clarified with particular emphasis on reactive oxygen species. © 2013 IOP Publishing Ltd.
Resumo:
Intraocular pressure (IOP) elevation is a key risk factor for glaucoma. Our understanding of the effect that IOP elevation has on the eye has been greatly enhanced by the application of the electroretinogram (ERG). In this paper, we describe how the ERG in the rodent eye is affected by changes in IOP magnitude, duration, and number of spikes. We consider how the variables of blood pressure and age can modify the effect of IOP elevation on the ERG. Finally, we contrast the effects that acute and chronic IOP elevation can have on the rodent ERG.
Resumo:
Despite considerable advances in reducing the production of dioxin-like toxicants in recent years, contamination of the food chain still occasionally occurs resulting in huge losses to the agri-food sector and risk to human health through exposure. Dioxin-like toxicity is exhibited by a range of stable and bioaccumulative compounds including polychlorinated dibenzo-p-dioxins (PCDDs) and dibenzofurans (PCDFs), produced by certain types of combustion, and man-made coplanar polychlorinated biphenyls (PCBs), as found in electrical transformer oils. While dioxinergic compounds act by a common mode of action making exposure detection biomarker based techniques a potentially useful tool, the influence of co-contaminating toxicants on such approaches needs to be considered. To assess the impact of possible interactions, the biological responses of H4IIE cells to challenge by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in combination with PCB-52 and benzo-a-pyrene (BaP) were evaluated by a number of methods in this study. Ethoxyresorufin-O-deethylase (EROD) induction in TCDD exposed cells was suppressed by increasing concentrations of PCB-52, PCB-153, or BaP up to 10 mu M. BaP levels below 1 mu M suppressed TCDD stimulated EROD induction, but at higher concentrations, EROD induction was greater than the maximum observed when cells were treated with TCDD alone. A similar biphasic interaction of BaP with TCDD co-exposure was noted in the AlamarBlue assay and to a lesser extent with PCB-52. Surface enhanced laser desorption/ionization-time of flight mass spectrometry (SELDI-TOF) profiling of peptidomic responses of cells exposed to compound combinations was compared. Cells co-exposed to TCDD in the presence of BaP or PCB-52 produced the most differentiated spectra with a substantial number of non-additive interactions observed. These findings suggest that interactions between dioxin and other toxicants create novel, additive, and non-additive effects, which may be more indicative of the types of responses seen in exposed animals than those of single exposures to the individual compounds.
Resumo:
Nasal congestion is one of the most troublesome symptoms of many upper airways diseases. We characterized the effect of selective α2c-adrenergic agonists in animal models of nasal congestion. In porcine mucosa tissue, compound A and compound B contracted nasal veins with only modest effects on arteries. In in vivo experiments, we examined the nasal decongestant dose-response characteristics, pharmacokinetic/pharmacodynamic relationship, duration of action, potential development of tolerance, and topical efficacy of α2c-adrenergic agonists. Acoustic rhinometry was used to determine nasal cavity dimensions following intranasal compound 48/80 (1%, 75 µl). In feline experiments, compound 48/80 decreased nasal cavity volume and minimum cross-sectional areas by 77% and 40%, respectively. Oral administration of compound A (0.1-3.0 mg/kg), compound B (0.3-5.0 mg/kg), and d-pseudoephedrine (0.3 and 1.0 mg/kg) produced dose-dependent decongestion. Unlike d-pseudoephedrine, compounds A and B did not alter systolic blood pressure. The plasma exposure of compound A to produce a robust decongestion (EC(80)) was 500 nM, which related well to the duration of action of approximately 4.0 hours. No tolerance to the decongestant effect of compound A (1.0 mg/kg p.o.) was observed. To study the topical efficacies of compounds A and B, the drugs were given topically 30 minutes after compound 48/80 (a therapeutic paradigm) where both agents reversed nasal congestion. Finally, nasal-decongestive activity was confirmed in the dog. We demonstrate that α2c-adrenergic agonists behave as nasal decongestants without cardiovascular actions in animal models of upper airway congestion.
Resumo:
The non disulphide-bridged peptides (NDBPs) of scorpion venoms are attracting increased interest due to their structural heterogeneity and broad spectrum of biological activities. Here, two novel peptides, named AcrAP1 and AcrAP2, have been identified in the lyophilised venom of the Arabian scorpion, Androctonus crassicauda, through “shotgun” molecular cloning of their biosynthetic precursor-encoding cDNAs. The respective mature peptides, predicted from these cloned cDNAs, were subsequently isolated from the same venom sample using reverse phase HPLC and their identities were confirmed by use of mass spectrometric techniques. Both were found to belong to a family of highly-conserved scorpion venom antimicrobial peptides - a finding confirmed through the biological investigation of synthetic replicates. Analogues of both peptides designed for enhanced cationicity, displayed enhanced potency and spectra of antimicrobial activity but, unlike the native peptides, these also displayed potent growth modulation effects on a range of human cancer cell lines. Thus natural peptide templates from venom peptidomes can provide the basis for rational analogue design to improve both biological potency and spectrum of action. The diversity of such templates from such natural sources undoubtedly provides the pharmaceutical industry with unique lead compounds for drug discovery.
Resumo:
AIMS: The effect of dietary sucrose on insulin resistance and the pathogenesis of diabetes and vascular disease is unclear. We assessed the effect of 5% versus 15% sucrose intakes as part of a weight maintaining, eucaloric diet in overweight/obese subjects.
METHODS: Thirteen subjects took part in a randomised controlled crossover study (M:F 9:4, median age 46 years, range 37-56 years, BMI 31.7±0.9 kg/m(2)). Subjects completed two 6 week dietary periods separated by 4 week washout. Diets were designed to have identical macronutrient profile. Insulin action was assessed using a two-step hyperinsulinaemic euglycaemic clamp; glucose tolerance, vascular compliance, body composition and lipid profiles were also assessed.
RESULTS: There was no change in weight or body composition between diets. There was no difference in peripheral glucose utilization or suppression of endogenous glucose production. Fasting glucose was significantly lower after the 5% diet. There was no demonstrated effect on lipid profiles, blood pressure or vascular compliance.
CONCLUSION: A low-sucrose diet had no beneficial effect on insulin resistance as measured by the euglycaemic glucose clamp. However, reductions in fasting glucose, one hour insulin and insulin area under the curve with the low sucrose diet on glucose tolerance testing may indicate a beneficial effect and further work is required to determine if this is the case. Clinical Trial Registration number ISRCTN50808730.
Resumo:
The simultaneous delivery of multiple cancer drugs in combination therapies to achieve optimal therapeutic effects in patients can be challenging. This study investigated whether co-encapsulation of the BH3-mimetic ABT-737 and the topoisomerase I inhibitor camptothecin (CPT) in PEGylated polymeric nanoparticles (NPs) was a viable strategy for overcoming their clinical limitations and to deliver both compounds at optimal ratios. We found that thrombocytopenia induced by exposure to ABT-737 was diminished through its encapsulation in NPs. Similarly, CPT-associated leukopenia and gastrointestinal toxicity were reduced compared with the administration of free CPT. In addition to the reduction of dose-limiting side effects, the co-encapsulation of both anticancer compounds in a single NP produced synergistic induction of apoptosis in both in vitro and in vivo colorectal cancer models. This strategy may widen the therapeutic window of these and other drugs and may enhance the clinical efficacy of synergistic drug combinations.
Resumo:
The accurate definition of the extreme wave loads which act on offshore structures represents a significant challenge for design engineers and even with decades of empirical data to base designs upon there are still failures attributed to wave loading. The environmental conditions which cause these loads are infrequent and highly non-linear which means that they are not well understood or simple to describe. If the structure is large enough to affect the incident wave significantly further non-linear effects can influence the loading. Moreover if the structure is floating and excited by the wave field then its responses, which are also likely to be highly non-linear, must be included in the analysis. This makes the description of the loading on such a structure difficult to determine and the design codes will often suggest employing various tools including small scale experiments, numerical and analytical methods, as well as empirical data if available.
Wave Energy Converters (WECs) are a new class of offshore structure which pose new design challenges, lacking the design codes and empirical data found in other industries. These machines are located in highly exposed and energetic sites, designed to be excited by the waves and will be expected to withstand extreme conditions over their 25 year design life. One such WEC is being developed by Aquamarine Power Ltd and is called Oyster. Oyster is a buoyant flap which is hinged close to the seabed, in water depths of 10 to 15m, piercing the water surface. The flap is driven back and forth by the action of the waves and this mechanical energy is then converted to electricity.
It has been identified in previous experiments that Oyster is not only subject to wave impacts but it occasionally slams into the water surface with high angular velocity. This slamming effect has been identified as an extreme load case and work is ongoing to describe it in terms of the pressure exerted on the outer skin and the transfer of this short duration impulsive load through various parts of the structure.
This paper describes a series of 40th scale experiments undertaken to investigate the pressure on the face of the flap during the slamming event. A vertical array of pressure sensors are used to measure the pressure exerted on the flap. Characteristics of the slam pressure such as the rise time, magnitude, spatial distribution and temporal evolution are revealed. Similarities are drawn between this slamming phenomenon and the classical water entry problems, such as ship hull slamming. With this similitude identified, common analytical tools are used to predict the slam pressure which is compared to that measured in the experiment.
Resumo:
The effects of high-pressure processing (HPP) in conjunction with an essential oil-based active packaging on the surface of ready-to-eat (RTE) chicken breast were investigated as post-processing listericidal treatment. Three different treatments were used, and all samples were vacuum packed: (i) HPP at 500. MPa for 1. min (control), (ii) active packaging based on coriander essential oil, and (iii) active packaging and HPP. When applied individually, active packaging and pressurisation delayed the growth of Listeria monocytogenes. The combination of HPP and active packaging resulted in a synergistic effect reducing the counts of the pathogen below the detection limit throughout 60. days storage at 4. °C. However, when these samples were stored at 8. °C, growth did occur, but again a delay in growth was observed. The effects on colour and lipid oxidation were also studied during storage and were not significantly affected by the treatments. Active packaging followed by in-package pressure treatment could be a useful approach to reduce the risk of L. monocytogenes in cooked chicken without impairing its quality. Industrial relevance: Ready-to-eat products are of great economic importance to the industry. However, they have been implicated in several outbreaks of listeriosis. Therefore, effective ways to reduce the risk from this pathogenic microorganism can be very attractive for manufacturers. This study showed that the use of active packaging followed by HPP can enhance the listericidal efficiency of the treatment while using lower pressure levels, and thus having limited effects on colour and lipid oxidation of RTE chicken breast.
Resumo:
Aflatoxin B1 (AFB1), ochratoxin A (OTA) and fumonisin B1 (FB1) are important mycotoxins in terms of
human exposure via food, their toxicity and regulatory limits that exist worldwide. Mixtures of toxins can frequently be present in foods, however due to the complications of determining their combined toxicity,
legal limits of exposure are determined for single compounds, based on long standing toxicological
techniques. High content analysis (HCA) may be a useful tool to determine total toxicity of complex
mixtures of mycotoxins. Endpoints including cell number (CN), nuclear intensity (NI), nuclear area (NA),
plasma membrane permeability (PMP), mitochondrial membrane potential (MMP) and mitochondrial
mass (MM) were compared to the conventional 3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyltetrazolium
bromide (MTT) and neutral red (NR) endpoints in MDBK cells. Individual concentrations of each
mycotoxin (OTA 3mg/ml, FB1 8mg/ml and AFB11.28mg/ml) revealed no cytotoxicity with MTTor NR but
HCA showed significant cytotoxic effects up to 41.6% (p0.001) and 10.1% (p0.05) for OTA and AFB1,
respectively. The tertiary mixture (OTA 3mg/ml, FB1 8mg/ml and AFB1 1.28mg/ml) detected up to 37.3%
and 49.8% more cytotoxicity using HCA over MTT and NR, respectively. Whilst binary combinations of
OTA (3mg/ml) and FB1 (8mg/ml) revealed synergistic interactions using HCA (MMP, MM, NI endpoints)
not detected using MTT or NR. HCA is a highly novel and sensitive tool that could substantially help
determine future regulatory limits, for single and combined toxins present in food, ensuring legislation is based on true risks to human health exposure.