126 resultados para Mossbauer scattering


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a generic transfer matrix approach for the description of the interaction of atoms possessing multiple ground state and excited state sublevels with light fields. This model allows us to treat multi-level atoms as classical scatterers in light fields modified by, in principle, arbitrarily complex optical components such as mirrors, resonators, dispersive or dichroic elements, or filters. We verify our formalism for two prototypical sub-Doppler cooling mechanisms and show that it agrees with the standard literature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The relative biological effectiveness (RBE) of passive scattered (PS) and pencil beam scanned (PBS) proton beam delivery techniques for uniform beam configurations was determined by clonogenic survival. The radiobiological impact of modulated beam configurations on cell survival occurring in- or out-of-field for both delivery techniques was determined with intercellular communication intact or physically inhibited. Cell survival responses were compared to those observed using a 6 MV photon beam produced with a linear accelerator. DU-145 cells showed no significant difference in survival response to proton beams delivered by PS and PBS or 6 MV photons taking into account a RBE of 1.1 for protons at the centre of the spread out Bragg peak. Significant out-of-field effects similar to those observed for 6 MV photons were observed for both PS and PBS proton deliveries with cell survival decreasing to 50-60% survival for scattered doses of 0.05 and 0.03 Gy for passive scattered and pencil beam scanned beams respectively. The observed out-of-field responses were shown to be dependent on intercellular communication between the in-and out-of-field cell populations. These data demonstrate, for the first time, a similar RBE between passive and actively scanned proton beams and confirm that out-of-field effects may be important determinants of cell survival following exposure to modulated photon and proton fields

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present here a detailed study of the complex relationship between the electromagnetic near-field and far-field responses of "real" nanostructured metallic surfaces. The near-field and far-field responses are specified in terms of (spectra of) the surface-enhanced Raman-scattering enhancement factor (SERS EF) and optical extinction, respectively. First, it is shown that gold nanorod- and nanotube-array substrates exhibit three distinct localized surface plasmon resonances (LSPRs): a longitudinal, a transverse, and a cavity mode. The cavity mode simultaneously has the largest impact on the near-field behavior (as observed through the SERS EF) and the weakest optical interaction: It has a "near-field-type" character. The transverse and longitudinal modes have a significant impact on the far-field behavior but very little impact on SERS: They have a "far-field-type" character. We confirm the presence of the cavity mode using a combination of SERS EF spectra, electron microscopy, and electromagnetic modeling and thus clearly illustrate and explain the (lack of) correlation between the SERS EF spectra and the optical response in terms of the contrasting character of the three LSPRs. In doing so, we experimentally demonstrate that, for a surface that supports multiple LSPRs, the near-field and far-field properties can in fact be tuned almost independently. It is further demonstrated that small changes in geometrical parameters that tune the spectral location of the LPSRs can also drastically influence the character of these modes, resulting in certain unusual behavior, such as the far-field resonance redshift as the near-field resonance blueshifts. DOI: 10.1103/PhysRevX.3.011001

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Metal oxide nanoparticles (MONPs) have widespread usage across many disciplines, but monitoring molecular processes at their surfaces in situ has not been possible. Here we demonstrate that MONPs give highly enhanced (X10(4)) Raman scattering signals from molecules at the interface permitting direct monitoring of their reactions, when placed on top of flat metallic surfaces. Experiments with different metal oxide materials and molecules indicate that the enhancement is generic and operates at the single nanoparticle level. Simulations confirm that the amplification is principally electromagnetic and is a result of optical modulation of the underlying plasmonic metallic surface by MONPs, which act as scattering antennae and couple light into the confined region sandwiched by the underlying surface. Because of additional functionalities of metal oxides as magnetic, photoelectrochemical and catalytic materials, enhanced Raman scattering mediated by MONPs opens up significant opportunities in fundamental science, allowing direct tracking and understanding of application-specific transformations at such interfaces. We show a first example by monitoring the MONP-assisted photocatalytic decomposition reaction of an organic dye by individual nanoparticles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Optical Thomson scattering has been implemented as a diagnostic of laser ablated plumes generated with second harmonic Nd:YAG laser radiation at 532 nm. Thomson scattering data with both spatial and temporal resolution has been collected, giving both electron density, and temperature distributions within the plume as a function of time. Although the spatial profiles do not match very well for simple models assuming either isothermal or isentropic expansion, consideration of the measured ablated mass indicates an isothermal expansion fits better than an isentropic expansion and indeed, at late time, the spatial profile of temperature is almost consistent with an isothermal approximation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have carried out optical Thomson scattering measurements from a laser induced breakdown in He at 1 atmosphere. The breakdown was created with a Nd:YAG laser with 9ns pulse duration and 400mJ pulse energy focused into a chamber filled with He. A second harmonic Nd: YAG laser with 9ns pulses and up to 80mJ energy was used to obtain temporally and spatially resolved data on the electron density and temperature. In parallel experiments, we measured the emission of the 447.1nm line from He I. Initial results suggest good agreement between densities inferred but full Abel inversion is needed for conclusive results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A proof-of-concept study was reported on analysis of antigen–antibody recognition based on resonant Rayleigh scattering response of single Au nanoparticles in an imaging chamber. As benefited by a traditional dark-field microscope and a spectrograph, individual Au nanoparticles (30 nm) were observed with high signal-to-noise ratio and they were effectively utilized to monitor changes in refractive index induced by specific binding of the adsorbates. Using PSA antigen as a model, a LSPR ?max shift of about 2.85 nm was recorded for a molecular binding corresponding to 0.1 pg ml-1 of the protein biomarker. This result successfully demonstrates a non-labeling detection system for proteins as well as thousands of different chemical or biological species, and it possesses a great potential as a sensitive, on-chip and multiplexing detection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The combinatorial frequency generation by the periodic stacks of binary layers of anisotropic nonlinear dielectrics is examined. The products of nonlinear scattering are characterised in terms of the three-wave mixing processes. It is shown that the intensity of the scattered waves of combinatorial frequencies is strongly influenced by the constitutive and geometrical parameters of the anisotropic layers, and the frequency ratio and angles of incidence of pump waves. The enhanced efficiency of the frequency conversion at Wolf-Bragg resonances has been demonstrated for the lossless and lossy-layered structures. © 2012 O. V. Shramkova and A. G. Schuchinsky.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Multiple Gaussian pulse interactions and scattering in the nonlinear layered dielectric structures have been examined. The Gaussian pulses with different centre frequencies and lengths are incident at oblique angles on the finite stack of nonlinear dielectric layers. The properties of the reflected and refracted waveforms and the effects of the structure and the incident pulses' parameters on the mixing process are discussed. It is shown that the efficiency of forward emission at the combinatorial frequency can be considerably increased when the wavelengths of interacting pulses are close to the edges of electromagnetic bandgap. © 2012 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The pulse mixing and scattering by finite nonlinear Thue-Morse quasi-periodic dielectric multilayered structure illuminated by two Gaussian pulses with different centre frequencies and lengths are investigated. The three-wave mixing technique is applied to study the nonlinear processes. The properties of the scattered waveforms and the effects of the structure and the incident pulses' parameters on the mixing process are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The combinatorial frequency generation by a Fibonacci type quasi-periodic dielectric multilayered structure illuminated by two plane waves has been analysed. The effects of the layer parameters and Fibonacci sequence order on the properties of the combinatorial frequency waves emitted from the stacked nonlinear layers are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A proof-of-concept study was reported on analysis of antigen-antibody recognition based on resonant Rayleigh scattering response of single Au nanoparticles on a microimaging chamber. As benefited by a traditional dark-field microscope and a spectrograph, tiny 30 nm Au nanoparticles were effectively used as nanosensors to monitor changes in refractive index induced by every single binding of the adsorbates. The individual Au nanoparticles were observed with very high signal-to-noise ratio, and a LSPR ?max shift of about 2.5 nm accounting for the detection of PSA antigen with concentration as low as 0.1 pg ml-1 was recorded. This resulted in the successful demonstration of a non-labelling detection system for proteins as well as thousands of different chemical or biological species with possibility of miniaturization and multiplexing scheme.