102 resultados para Mobile obstacle


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel dual-band printed diversity antenna is proposed and studied. The antenna, which consists of two back-to- back monopoles with symmetric configuration, is printed on a printed circuit board. The effects of some important parameters of the proposed antenna are deeply studied and the design methodology is given. A prototype of the proposed antenna operating at UMTS (1920-2170 MHz) and 2.4-GHz WLAN (2400-2484 MHz) bands is provided to demonstrate the usability of the methodology in dual-band diversity antenna for mobile terminals. In the above two bands, the isolations of the prototype are larger than 13 dB and 16 dB, respectively. The measured radiation patterns of the two monopoles in general cover complementary space regions. The diversity performance is also evaluated by calculating the envelope correlation coefficient, the mean effective gains of the antenna elements and the diversity gain. It is proved that the proposed antenna can provide spatial and pattern diversity to combat multipath fading.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this letter, a multiantenna system with four printed monopoles is presented. The monopoles that occupy relatively small area are positioned at the four corners of a printed circuit board, so that the four-element antenna system can be equipped on the lid of a folder-type mobile phone, leaving enough space for the circuits and reducing the effect of human hands. Based on simulation, a prototype for the Universal Mobile Telecommunications System (UMTS) operation has been constructed and tested. The measured -10-dB impedance bandwidths of the four elements are larger than 320 MHz with higher than 11.5-dB isolation. Moreover, the proposed antenna can provide spatial and pattern diversity in a diversity/multiple-input-multiple-output (MIMO) system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To cope with the rapid growth of multimedia applications that requires dynamic levels of quality of service (QoS), cross-layer (CL) design, where multiple protocol layers are jointly combined, has been considered to provide diverse QoS provisions for mobile multimedia networks. However, there is a lack of a general mathematical framework to model such CL scheme in wireless networks with different types of multimedia classes. In this paper, to overcome this shortcoming, we therefore propose a novel CL design for integrated real-time/non-real-time traffic with strict preemptive priority via a finite-state Markov chain. The main strategy of the CL scheme is to design a Markov model by explicitly including adaptive modulation and coding at the physical layer, queuing at the data link layer, and the bursty nature of multimedia traffic classes at the application layer. Utilizing this Markov model, several important performance metrics in terms of packet loss rate, delay, and throughput are examined. In addition, our proposed framework is exploited in various multimedia applications, for example, the end-to-end real-time video streaming and CL optimization, which require the priority-based QoS adaptation for different applications. More importantly, the CL framework reveals important guidelines as to optimize the network performance

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The proliferation problem of video streaming applications and mobile devices has prompted wireless network operators to put more efforts into improving quality of experience (QoE) while saving resources that are needed for high transmission rate and large size of video streaming. To deal with this problem, we propose an energy-aware rate and description allocation optimization method for video streaming in cellular network assisted device-to-device (D2D) communications. In particular, we allocate the optimal bit rate to each layer of video segments and packetize the segments into multiple descriptions with embedded forward error correction (FEC) for realtime streaming without retransmission. Simultaneously, the optimal number of descriptions is allocated to each D2D helper for transmission. The two allocation processes are done according to the access rate of segments, channel state information (CSI) of D2D requester, and remaining energy of helpers, to gain the highest optimization performance. Simulation results demonstrate that our proposed method (named OPT) significantly enhances the performance of video streaming in terms of high QoE and energy saving.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This special issue provides the latest research and development on wireless mobile wearable communications. According to a report by Juniper Research, the market value of connected wearable devices is expected to reach $1.5 billion by 2014, and the shipment of wearable devices may reach 70 million by 2017. Good examples of wearable devices are the prominent Google Glass and Microsoft HoloLens. As wearable technology is rapidly penetrating our daily life, mobile wearable communication is becoming a new communication paradigm. Mobile wearable device communications create new challenges compared to ordinary sensor networks and short-range communication. In mobile wearable communications, devices communicate with each other in a peer-to-peer fashion or client-server fashion and also communicate with aggregation points (e.g., smartphones, tablets, and gateway nodes). Wearable devices are expected to integrate multiple radio technologies for various applications' needs with small power consumption and low transmission delays. These devices can hence collect, interpret, transmit, and exchange data among supporting components, other wearable devices, and the Internet. Such data are not limited to people's personal biomedical information but also include human-centric social and contextual data. The success of mobile wearable technology depends on communication and networking architectures that support efficient and secure end-to-end information flows. A key design consideration of future wearable devices is the ability to ubiquitously connect to smartphones or the Internet with very low energy consumption. Radio propagation and, accordingly, channel models are also different from those in other existing wireless technologies. A huge number of connected wearable devices require novel big data processing algorithms, efficient storage solutions, cloud-assisted infrastructures, and spectrum-efficient communications technologies.