89 resultados para Microorganisms.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ectomycorrhizal fungi and saprotrophic microorganisms coexist and interact in the mycorrhizosphere. We review what is known regarding these interactions and how they may influence processes such as ectomycorrhiza formation, mycelial growth, and the dynamics of carbon movement to and within the rhizosphere. Particular emphasis is placed on the potential importance of interactions in decomposition of soil organic matter and degradation of persistant organic pollutants in soil. While our knowledge is currently fairly limited, it seems likely that interactions have profound effects on mycorrhizosphere processes. More extensive research is warranted to provide novel insights into mycorrhizosphere ecology and to explore the potential for manipulating the ectomycorrhizosphere environment for biotechnological purposes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The spatial location of microorganisms in the soil three-dimensional structure with respect to their substrates plays an important role in the persistence and turnover of natural and xenobiotic organic compounds. To study the effect of spatial location on the mineralisation of 14C-2,4-dichlorophenol (2,4-DCP, 0.15 or 0.31 μmol g-1) and 14C-glucose (2.77 μmol g-1), columns packed with autoclaved soil aggregates (2-5 mm) were used. Using a chloride tracer of water movement, the existence of 'immobile' water, which was by-passed by preferentially flowing 'mobile' water, was demonstrated. By manipulation of the soil moisture content, the substrates were putatively placed to these conceptual hydrological domains (immobile and mobile water). Leaching studies revealed that approximately 1.7 (glucose) and 3.4 (2.4-DCP) times the amount of substrate placed in mobile water was recovered in the first 4 fractions of leachate when compared to substrate placed in immobile water. The marked difference in the breakthrough curves was taken as evidence of successful substrate placement. The 2,4-DCP degrading bacterium, Burkholderia sp. RASCc2, was inoculated in mobile water (1.8-5.2 × 107 cells g-1 soil) and parameters (asymptote, time at maximum rate, calculated maximum rate) describing the mineralisation kinetics of 2,4-DCP and glucose previously added to immobile or mobile water domains were compared, For glucose, there was no significant effect (P > 0.1) of substrate placement on any of the mineralisation parameters. However, substrate placement had a significant effect (P < 0.05) on parameters describing 2,4-DCP mineralisation. In particular, 2,4-DCP added in mobile water was mineralised with a greater maximum rate and with a reduced time at maximum rate when compared to 2,4-DCP added to immobile water. The difference in response between the two test substrates may reflect the importance of sorption in controlling the spatial bioavailability of compounds in soil. © 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Autoclaved soil is commonly used for the study of xenobiotic sorption and as an abiotic control in biodegradation experiments. Autoclaving has been reported to alter soil physico-chemical and xenobiotic sorption characteristics such that comparison of autoclaved with non-autoclaved treatments in soil aging and bioavailability studies may yield misleading results. Experiments could be improved by using autoclaved soil re-inoculated with indigenous microorganisms as an additional or alternative non-sterile treatment for comparison with the sterile, autoclaved control. We examined the effect of autoclaving (3 x 1 h, 121°C, 103.5 KPa) on the physico-chemical properties of a silt loam soil (pH 7.2, 2.3% organic carbon) and the establishment of indigenous microorganisms reintroduced after autoclaving. Sterilisation by autoclaving significantly (p ≤ 0.05) decreased pH (0.6 of a unit) and increased concentrations of water-soluble organic carbon (WSOC; nontreated = 75 mg kg-1; autoclaved = 1526 mg kg-1). The initial first-order rate of 14C-2,4-dichloro-UL-phenol (2,4-DCP) adsorption to non-treated, autoclaved and re-inoculated soil was rapid (K1 = 16.8-24.4 h-1) followed by a slower linear phase (K2). In comparison with autoclaved soil (0.038% day-1), K2 values were higher for re-inoculated (0.095% day-1) and nontreated (0.181% day-1) soil. This was attributed to a biological process. The Freundlich adsorption coefficient (K(f)) for autoclaved soil was significantly (p ≤ 0.05) higher than for re-inoculated or non-treated soil. Increased adsorption was attributed to autoclaving-induced changes to soil pH and solution composition. Glucose-induced respiration of autoclaved soil after re-inoculation was initially twice that in the non-treated control, but it decreased to control levels by day 4. This reduction corresponded to a depletion of WSOC. 2,4-DCP mineralisation experiments revealed that the inoculum of nonsterile soil (0.5 g) contained 2,4-DCP-degrading microorganisms capable of survival in autoclaved soil. The lag phase before detection of significant 2,4-DCP mineralisation was reduced (from 7 days to ≤3 days) by pre-incubation of re-inoculated soils for 7 and 14 days before 2,4-DCP addition. This was attributed to the preferential utilisation of WSOC prior to the onset of 2,4-DCP mineralisation. Cumulative 14CO2 evolved after 21 days was significantly lower (p ≤ 0.05) from non-treated soil (25.3%) than re-inoculated soils (ca 45%). Experiments investigating sorption-biodegradation interactions of xenobiotics in soil require the physico-chemical properties of sterile and non-sterile treatments to be as comparable as possible. For fundamental studies, we suggest using re-inoculated autoclaved soil as an additional or alternative non-sterile treatment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To determine the effect of microbial metabolites on the release of root exudates from perennial ryegrass, seedlings were pulse labelled with [14C]-CO2 in the presence of a range of soil micro-organisms. Microbial inoculants were spatially separated from roots by Millipore membranes so that root infection did not occur. Using this technique, only microbial metabolites affected root exudation. The effect of microbial metabolites on carbon assimilation and distribution and root exudation was determined for 15 microbial species. Assimilation of a pulse label varied by over 3.5 fold, dependent on inoculant. Distribution of the label between roots and shoots also varied with inoculant, but the carbon pool that was most sensitive to inoculation was root exudation. In the absence of a microbial inoculant only 1% of assimilated label was exuded. Inoculation of the microcosms always caused an increase in exudation but the percentage exuded varied greatly, within the range of 3-34%. © 1995 Kluwer Academic Publishers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A microcosm is described in which root exudation may be estimated in the presence of microorganisms. Ryegrass seedlings are grown in microcosms in which roots were spatially separated from a microbial inoculant by a Millipore membrane. Seedlings grown in the microcosms were labelled with [14C]-CO2, and the fate of the label within the plant and rhizosphere was determined. Inoculation of the microcosms with Cladosporium resinae increased net fixation of the [14C] label compared to plants grown under sterile conditions. Inoculation also increased root exudation. The use of the microcosm was illustrated and its applications discussed. © 1991 Kluwer Academic Publishers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Burkholderia cepacia complex (Bcc) species are a group of Gram-negative opportunistic pathogens that chronically infect the airways of cystic fibrosis patients, but they can also infect patients with various types of immunosuppressive disorders. Bcc members are multidrug resistant bacteria that have the ability to persist in the infected host and also elicit robust inflammatory responses. Studies using macrophages, neutrophils and dendritic cells, combined with dramatic advances in the ability to genetically manipulate these microorganisms have contributed to increase our understanding of the molecular mechanisms of virulence in these pathogens and the molecular details of the cell host responses triggering inflammation. This chapter reviews our understanding of the pathogenic mechanisms used by Bcc to establish an intracellular niche in phagocytic cells and modulate host cell responses that ultimately end up in cell death and a proinflammatory response.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

One of the most cost effective methods of pollution remediation is through natural attenuation where the resident microorganisms are responsible for the breakdown of pollutants (Dou et al. 2008). Other forms of bioremediation - such as analogue enrichment, composting and bio-venting - also use the microbes already present in a contaminated site to enhance the remediation process. In order for these approaches to be successful, in an industrial setting, some form of monitoring needs to take place enabling conclusions to be drawn about the degradation processes occurring. In this review we look at some key molecular biology techniques that have the potential to act as a monitoring tool for industries dealing with contaminated land. 

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background and Objectives: Gingival fibroblasts play a significant role in the innate immune response of the periodontium to bacterial stimulation. A number of microorganisms and their by-products induce a host response that commonly leads to tissue destruction and periodontal disease progression. LL-37 is an antimicrobial peptide which has multiple roles in host defence including immunomodulation and wound-healing. We have investigated the role of LL-37 on the responsiveness of human gingival fibroblasts to microbial challenge from E. coli lipopolysaccharide (LPS) and P. gingivalis LPS, as well as exploring the direct effects of LL-37 on human gingival fibroblasts. Methods: The effect of LL-37 on bacterial LPS-induced expression of IL-6 and IL-8 by gingival fibroblasts was determined by ELISA. The influence of LL-37 on bacterial LPS-induced IκBα degradation in human gingival fibroblasts was investigated by western blot. The direct effects of LL-37 on modulating gingival fibroblasts gene expression were initially determined by DNA microarray analysis and subsequently confirmed by quantitative polymerase chain reaction (Q-PCR) and ELISA analysis of 9 selected genes. Results: Bacterial LPS-induced IL-8 and IL-6 production by human gingival fibroblasts were significantly reduced in the presence of LL-37 at concentrations in the range of 1-10 µg/ml (p<0.05). The presence of LL-37 at a concentration of 5 µg/ml led to a reduction in LPS-induced IκBα degradation by E. coli LPS (100 ng/ml) and P. gingivalis LPS (10 µg/ml). LL-37 (50 µg/ml) significantly altered the gene expression of 367 genes in human gingival fibroblasts by at least 2-fold. CXCL1, CXCL2, CXCL3, IL-24, IL-8, CCL2, and SOCS3 mRNA were significantly upregulated by LL-37 (p<0.05). LL-37 also significantly stimulated expression of IL-8, hepatocyte growth factor (HGF) and CXCL1 (p<0.05) at the protein level. Discussion: LL-37 plays an important role in the innate immune response due to its broad spectrum antimicrobial and immunomodulatory activity. The ability of LL-37 to directly regulate expression of a range of genes, central to the pathogenesis of periodontitis, identifies multiple roles for the peptide in host homeostasis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chemical activities of hydrophobic substances can determine the windows of environmental conditions over which microbial systems function and the metabolic inhibition of microorganisms by benzene and other hydrophobes can, paradoxically, be reduced by compounds that protect against cellular water stress (Bhaganna et al. in Microb Biotechnol 3:701-716, 2010; Cray et al. in Curr Opin Biotechnol 33:228-259, 2015a). We hypothesized that this protective effect operates at the macromolecule structure-function level and is facilitated, in part at least, by genome-mediated adaptations. Based on proteome profiling of the soil bacterium Pseudomonas putida, we present evidence that (1) benzene induces a chaotrope-stress response, whereas (2) cells cultured in media supplemented with benzene plus glycerol were protected against chaotrope stress. Chaotrope-stress response proteins, such as those involved in lipid and compatible-solute metabolism and removal of reactive oxygen species, were increased by up to 15-fold in benzene-stressed cells relative to those of control cultures (no benzene added). By contrast, cells grown in the presence of benzene + glycerol, even though the latter grew more slowly, exhibited only a weak chaotrope-stress response. These findings provide evidence to support the hypothesis that hydrophobic substances induce a chaotropicity-mediated water stress, that cells respond via genome-mediated adaptations, and that glycerol protects the cell's macromolecular systems. We discuss the possibility of using compatible solutes to mitigate hydrocarbon-induced stresses in lignocellulosic biofuel fermentations and for industrial and environmental applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The interaction between microorganisms and host defense mechanisms is a decisive factor for the survival of marine bivalves. They rely on cell-mediated and humoral reactions to overcome the pathogens that naturally occur in the marine environment. In order to understand host defense reactions in animals inhabiting extreme environments we investigated some of the components from the immune system of the deep sea hydrothermal vent mussel Bathymodiolus azoricus. Cellular constituents in the hemolymph and extrapallial fluid were examined and led to the identification of three types of hemocytes revealing the granulocytes as the most abundant type of cell. To further characterize hemocyte types, the presence of cell surface carbohydrate epitopes was demonstrated with fluorescent WGA lectin, which was mostly ascribed to the granulocytes. Cellular reactions were then investigated by means of phagocytosis and by the activation of putative MAPKs using the microbial compounds zymosan, glucan, peptidoglycan and lipopolysaccharide. Two bacterial agents, Bacillus subtilis and Vibrio parahaemolyticus, were also used to stimulate hemocytes. The results showed that granulocytes were the main phagocytic cells in both hemolymph and extrapallial fluid of B. azoricus. Western blotting analyses using commercially available antibodies against ERK, p38 and JNK, suggested that these putative kinases are involved in signal transduction pathways during experimental stimulation of B. azoricus hemocytes. The fluorescent Ca2+ indicator Fura-2 AM was also insightful in demonstrating hemocyte stimulation in the presence of laminarin or live V. parahaemolyticus. Finally, the expression of the antibacterial gene mytilin was analyzed in gill tissues by means of RT-PCR and whole-mount in situ hybridization. Mytilin transcripts were localized in hemocytes underlying gill epithelium. Moreover, mytilin was induced by exposure of live animals to V. parahaemolyticus. These findings support the premise of a conserved innate immune system in B. azoricus. Such system is comparable to other Bivalves and involves the participation of cellular and humoral components. © 2008 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fossil mesofauna and bacteria recovered from a paleosol in a moraine situated adjacent to the inland ice, Antarctica, and dating to the earliest glacial event in the Antarctic Dry Valleys opens several questions. The most important relates to understanding of the mineralogy and chemistry of the weathered substrate habitat in which Coleoptera apparently thrived at some point in the Early/Middle Miocene and perhaps earlier. Here, Coleoptera remains are only located in one of six horizons in a paleosol formed in moraine deposited during the alpine glacial event (> 15 Ma). A tendency for quartz to decrease upward in the section may be a detrital effect or a product of dissolution in the early stage of profile morphogenesis when climate was presumably milder and the depositing glacier of temperate type. Discontinuous distributions of smectite, laumontite, and hexahydrite may have provided nutrients and water to mesofauna and bacteria during the early stage of biotic colonization of the profile. Because the mesofauna were members of burrowing Coleoptera species, future work should assess the degree to which the organisms occupied other sites in the Dry Valleys in the past. Whereas there is no reasonable expectations of finding Coleoptera/insect remains on Mars, the chemistry and mineralogy of the paleosol is within a life expectancy window for the presence of microorganisms, principally bacteria and fungi. Thus, parameters discussed here within this Antarctic paleosol could provide an analogue to identifying similar fossil or life-bearing weathered regolith on Mars.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study evaluated the effect of an industrial scale continuous flow microwave volumetric heating system in comparison to conventional commercial scale pasteurisation for the processing of tomato juice in terms of physicochemical properties, microbial characteristics and antioxidant capacity. The effect against oxidative stress in Caco-2 cells, after in vitro digestion was also investigated. Physicochemical and colour characteristics of juices were very similar between technologies and during storage. Both conventional and microwave pasteurisation inactivated microorganisms and kept them in low levels throughout storage. ABTS+ values, but not ORAC, were higher for the microwave pasteurised juice at day 0 however no significant differences between juices were observed during storage. Juice processed with the microwave system showed an increased cytoprotective effect against H2O2 induced oxidation in Caco-2 cells. Organoleptic analysis revealed that the two tomato juices were very similar. The continuous microwave volumetric heating system appears to be a viable alternative to conventional pasteurisation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The dermaseptin antimicrobial peptide family contains members of 27–34 amino acids in length that have been predominantly isolated from the skins/skin secretions of phyllomedusine leaf frogs. By use of a degenerate primer in Rapid amplification of cDNA ends (RACE) PCR designed to a common conserved domain within the 5′-untranslated regions of previously-characterized dermaseptin encoding cDNAs, two novel members of this peptide family, named dermaseptin-PD-1 and dermaseptin-PD-2, were identified in the skin secretion of the phyllomedusine frog, Pachymedusa dacnicolor. The primary structures of both peptides were predicted from cloned cDNAs, as well as being confirmed by mass spectral analysis of crude skin secretion fractions resulted from reversed-phase high-performance liquid chromatography. Chemically-synthesized replicates of dermaseptin-PD-1 and dermaseptin-PD-2 were investigated for antimicrobial activity using standard model microorganisms (Gram-positive bacteria, Gram-negative bacteria and a yeast) and for cytotoxicity using mammalian red blood cells. The possibility of synergistic effects between the two peptides and their anti-cancer cell proliferation activities were assessed. The peptides exhibited moderate to high inhibition against the growth of the tested microorganisms and cancer cell lines with low haemolytic activity. Synergistic interaction between the two peptides in inhibiting the proliferation of Escherichia coli and human neuronal glioblastoma cell line, U251MG was also manifested.