174 resultados para Microbial genetics
Resumo:
Objectives: Genetic testing for the breast and ovarian cancer susceptibility genes BRCA1 and BRCA2 has important implications for the clinical management of people found to carry a mutation. However, genetic testing is expensive and may be associated with adverse psychosocial effects. To provide a cost-efficient and clinically appropriate genetic counselling service, genetic testing should be targeted at those individuals most likely to carry pathogenic mutations. Several algorithms that predict the likelihood of carrying a BRCA1 or a BRCA2 mutation are currently used in clinical practice to identify such individuals.
Resumo:
Breast cancer is the most common cause of cancer death in the United Kingdom, with a lifetime risk of one in nine in women. Only 5-10% of all cancers is thought to be due to strongly penetrant inherited predisposing genes, such as BRCA1 and BRCA2. However, other less penetrant genes, including some autosomal recessive genes, are likely to be of etiological importance in other families. This review addresses the current knowledge of breast cancer susceptibility genes and explores the possibilities for future developments. Features of tumor pathology, prognosis, and the scope for targeted treatments in mutation carriers are discussed, and the management of known carriers and those at increased risk for developing breast cancer are evaluated. Genetic testing for cancer susceptibility may become widely available in the future, and has important ethical and management implications. (C) 2004 Wiley-Liss, Inc.
Resumo:
Despite familial clustering of nephropathy and retinopathy severity in type 1 diabetes, few gene variants have been consistently associated with these outcomes.
Resumo:
Background: Anaerobic bacteria are increasingly regarded as important in cystic fibrosis (CF) pulmonary infection. The aim of this study was to determine the effect of antibiotic treatment on aerobic and anaerobic microbial community diversity and abundance during exacerbations in patients with CF.
Methods: Sputum was collected at the start and completion of antibiotic treatment of exacerbations and when clinically stable. Bacteria were quantified and identified following culture, and community composition was also examined using culture-independent methods.
Results: Pseudomonas aeruginosa or Burkholderia cepacia complex were detected by culture in 24/26 samples at the start of treatment, 22/26 samples at completion of treatment and 11/13 stable samples. Anaerobic bacteria were detected in all start of treatment and stable samples and in 23/26 completion of treatment samples. Molecular analysis showed greater bacterial diversity within sputum samples than was detected by culture; there was reasonably good agreement between the methods for the presence or absence of aerobic bacteria such as P aeruginosa (kappa=0.74) and B cepacia complex (kappa=0.92), but agreement was poorer for anaerobes. Both methods showed that the composition of the bacterial community varied between patients but remained relatively stable in most individuals despite treatment. Bacterial abundance decreased transiently following treatment, with this effect more evident for aerobes (median decrease in total viable count 2.3 x 10(7) cfu/g, p=0.005) than for anaerobes (median decrease in total viable count 3 x 10(6) cfu/g, p=0.046).
Conclusion: Antibiotic treatment targeted against aerobes had a minimal effect on abundance of anaerobes and community composition, with both culture and molecular detection methods required for comprehensive characterisation of the microbial community in the CF lung. Further studies are required to determine the clinical significance of and optimal treatment for these newly identified bacteria.
Resumo:
Inorganic polyphosphate (polyP) is increasingly being recognized as an important phosphorus sink within the environment, playing a central role in phosphorus exchange and phosphogenesis. Yet despite the significant advances made in polyP research there is a lack of rapid and efficient analytical approaches for the quantification of polyP accumulation in microbial cultures and environmental samples. A major drawback is the need to extract polyP from cells prior to analysis. Due to extraction inefficiencies this can lead to an underestimation of both intracellular polyP levels and its environmental pool size: we observed 23-58% loss of polyP using standard solutions and current protocols. Here we report a direct fluorescence based DAPI assay system which removes the requirement for prior polyP extraction before quantification. This increased the efficiency of polyP detection by 28-55% in microbial cultures suggesting quantitative measurement of the intracellular polyP pool. It provides a direct polyP assay which combines quantification capability with technical simplicity. This is an important step forward in our ability to explore the role of polyP in cellular biology and biogeochemical nutrient cycling.
Resumo:
Ubiquitous noxious hydrophobic substances, such as hydrocarbons, pesticides and diverse industrial chemicals, stress biological systems and thereby affect their ability to mediate biosphere functions like element and energy cycling vital to biosphere health. Such chemically diverse compounds may have distinct toxic activities for cellular systems; they may also share a common mechanism of stress induction mediated by their hydrophobicity. We hypothesized that the stressful effects of, and cellular adaptations to, hydrophobic stressors operate at the level of water : macromolecule interactions. Here, we present evidence that: (i) hydrocarbons reduce structural interactions within and between cellular macromolecules, (ii) organic compatible solutes-metabolites that protect against osmotic and chaotrope-induced stresses-ameliorate this effect, (iii) toxic hydrophobic substances induce a potent form of water stress in macromolecular and cellular systems, and (iv) the stress mechanism of, and cellular responses to, hydrophobic substances are remarkably similar to those associated with chaotrope-induced water stress. These findings suggest that it may be possible to devise new interventions for microbial processes in both natural environments and industrial reactors to expand microbial tolerance of hydrophobic substances, and hence the biotic windows for such processes.