242 resultados para Metastatic prostate cancer
Resumo:
Histone acetylation is a fundamental mechanism in the regulation of local chromatin conformation and gene expression. Research has focused on the impact of altered epigenetic environments on the expression of specific genes and their pathways. However, changes in histone acetylation also have a global impact on the cell. In this study we used digital texture analysis to assess global chromatin patterns following treatment with trichostatin A (TSA) and have observed significant alterations in the condensation and distribution of higher-order chromatin, which were associated with altered gene expression profiles in both immortalised normal PNT1A prostate cell line and androgen-dependent prostate cancer cell line LNCaP. Furthermore, the extent of TSA-induced disruption was both cell cycle and cell line dependent. This was illustrated by the identification of sub-populations of prostate cancer cells expressing high levels of H3K9 acetylation in the G2/M phase of the cell cycle that were absent in normal cell populations. In addition, the analysis of enriched populations of G1 cells showed a global decondensation of chromatin exclusively in normal cells.
Resumo:
The biological role of steroid 5 alpha-reductase isozymes (encoded by the SRD5A1 and SRD5A2 genes) and angiogenic factors that play important roles in the pathogenesis and vascularization of prostate cancer (PC) is poorly understood. The sub-cellular expression of these isozymes and vascular endothelial growth factor (VEGF) in PC tissue microarrays (n=62) was examined using immunohistochemistry. The effect of SRD5A inhibition on the angiogenesis pathway genes in PC was also examined in prostate cell lines, LNCaP, PC3, and RWPE-1, by treating them with the SRD5A inhibitors finasteride and dutasteride, followed by western blot, quantitative PCR, and ELISA chip array techniques. In PC tissues, nuclear SRD5A1 expression was strongly associated with higher cancer Gleason scores (P=0.02), higher cancer stage (P=0.01), and higher serum prostate specific antigen (PSA) levels (P=0.01), whereas nuclear SRD5A2 expression was correlated with VEGF expression (P=0.01). Prostate tumor cell viability was significantly reduced in dutasteride-treated PC3 and RWPE-1 cells compared with finasteride-treated groups. Expression of the angiogenesis pathway genes transforming growth factor beta 1 (TGFB1), endothelin (EDN1), TGF alpha (TGFA), and VEGFR1 was upregulated in LNCaP cells, and at least 7 out of 21 genes were upregulated in PC3 cells treated with finasteride (25 mu M). Our findings suggest that SRD5A1 expression predominates in advanced PC, and that inhibition of SRD5A1 and SRD5A2 together was more effective in reducing cell numbers than inhibition of SRD5A2 alone. However, these inhibitors did not show any significant difference in prostate cell angiogenic response. Interestingly, some angiogenic genes remained activated after treatment, possibly due to the duration of treatment and tumor resistance to inhibitors. Endocrine-Related Cancer (2010) 17 757-770
Resumo:
A molecular model for the P450 enzyme cytochrome P450 C17 (CYP17) is presented based on sequence alignments of multiple template structures and homology modeling. This enzyme plays a central role in the biosynthesis of testosterone and is emerging as a major target in prostate cancer, with the recently developed inhibitor abiraterone currently in advanced clinical trials. The model is described in detail, together with its validation, by providing structural explanations to available site-directed mutagenesis data. The CYP17 molecule in this model is in the form of a triangular prism, with an edge of similar to 55 angstrom and a thickness of similar to 37 angstrom. It is predominantly helical, comprising 13 alpha helices interspersed by six 3(10) helices and 11 beta-sheets. Multinanosecond molecular dynamics simulations in explicit solvent have been carried out, and principal components analysis has been used to reveal the details of dynamics around the active site. Coarse-grained methods have also been used to verify low-frequency motions, which have been correlated with active-site gating. The work also describes the results of docking synthetic inhibitors, including the drug abiraterone and the natural substrate pregnenolone, in the CYP17 active site together with molecular dynamics simulations on the complexes. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Consistency in target organ and organ at risk position from planning to treatment is an important basic principle of radiotherapy. This study evaluates the effectiveness of bladder-filling instructions in achieving a consistent and reproducible bladder volume at the time of planning CT and daily during the course of radical radiotherapy for prostate cancer. It also assessed the rate of bladder filling before and at the end of radiotherapy.