111 resultados para Mallampati classification
Resumo:
Aims/hypothesis: Diabetic nephropathy is a major diabetic complication, and diabetes is the leading cause of end-stage renal disease (ESRD). Family studies suggest a hereditary component for diabetic nephropathy. However, only a few genes have been associated with diabetic nephropathy or ESRD in diabetic patients. Our aim was to detect novel genetic variants associated with diabetic nephropathy and ESRD. Methods: We exploited a novel algorithm, ‘Bag of Naive Bayes’, whose marker selection strategy is complementary to that of conventional genome-wide association models based on univariate association tests. The analysis was performed on a genome-wide association study of 3,464 patients with type 1 diabetes from the Finnish Diabetic Nephropathy (FinnDiane) Study and subsequently replicated with 4,263 type 1 diabetes patients from the Steno Diabetes Centre, the All Ireland-Warren 3-Genetics of Kidneys in Diabetes UK collection (UK–Republic of Ireland) and the Genetics of Kidneys in Diabetes US Study (GoKinD US). Results: Five genetic loci (WNT4/ZBTB40-rs12137135, RGMA/MCTP2-rs17709344, MAPRE1P2-rs1670754, SEMA6D/SLC24A5-rs12917114 and SIK1-rs2838302) were associated with ESRD in the FinnDiane study. An association between ESRD and rs17709344, tagging the previously identified rs12437854 and located between the RGMA and MCTP2 genes, was replicated in independent case–control cohorts. rs12917114 near SEMA6D was associated with ESRD in the replication cohorts under the genotypic model (p < 0.05), and rs12137135 upstream of WNT4 was associated with ESRD in Steno. Conclusions/interpretation: This study supports the previously identified findings on the RGMA/MCTP2 region and suggests novel susceptibility loci for ESRD. This highlights the importance of applying complementary statistical methods to detect novel genetic variants in diabetic nephropathy and, in general, in complex diseases.
Resumo:
Tunnel construction planning requires careful consideration of the spoil management part, as this involves environmental, economic and legal requirements. In this paper a methodological approach that considers the interaction between technical and geological factors in determining the features of the resulting muck is proposed. This gives indications about the required treatments as well as laboratory and field characterisation tests to be performed to assess muck recovery alternatives. While this reuse is an opportunity for excavations in good quality homogeneous grounds (e.g. granitic mass), it is critical for complex formation. This approach has been validated, at present, for three different geo-materials resulting from a tunnel excavation carried out with a large diameter Earth Pressure Balance Shield (EPB) through a complex geological succession. Physical parameters and technological features of the three materials have been assessed, according to their valorisation potential, for defining re-utilisation patterns. The methodology proved to be effective and the laboratory tests carried out on the three materials allowed the suitability and treatment effectiveness for each muck recovery strategy to be defined. © 2014 Elsevier Ltd.
Resumo:
The new Global Initiative for Chronic Obstructive Lung Disease (GOLD) 2011 document recommends a combined assessment of chronic obstructive pulmonary disease (COPD) based on current symptoms and future risk.
A large database of primary-care COPD patients across the UK was used to determine COPD distribution and characteristics according to the new GOLD classification. 80 general practices provided patients with a Read code diagnosis of COPD. Electronic and hand searches of patient medical records were undertaken, optimising data capture.
Data for 9219 COPD patients were collected. For the 6283 patients with both forced expiratory volume in 1 s (FEV1) and modified Medical Research Council scores (mean¡SD age 69.2¡10.6 years, body mass index 27.3¡6.2 kg?m-2), GOLD 2011 group distributions were: A (low risk and fewer symptoms) 36.1%, B (low risk and more symptoms) 19.1%, C (high risk and fewer symptoms) 19.6% and D (high risk and more symptoms) 25.3%. This is in contrast with GOLD 2007 stage classification: I (mild) 17.1%, II (moderate) 52.2%, III (severe) 25.5% and IV (very severe) 5.2%. 20% of patients with FEV1 o50% predicted had more than two exacerbations in the previous 12 months. 70% of patients with FEV1 ,50% pred had fewer than two exacerbations in the previous 12 months.
This database, representative of UK primary-care COPD patients, identified greater proportions of patients in the mildest and most severe categories upon comparing 2011 versus 2007 GOLD classifications. Discordance between airflow limitation severity and exacerbation risk was observed.
Resumo:
Smart management of maintenances has become fundamental in manufacturing environments in order to decrease downtime and costs associated with failures. Predictive Maintenance (PdM) systems based on Machine Learning (ML) techniques have the possibility with low added costs of drastically decrease failures-related expenses; given the increase of availability of data and capabilities of ML tools, PdM systems are becoming really popular, especially in semiconductor manufacturing. A PdM module based on Classification methods is presented here for the prediction of integral type faults that are related to machine usage and stress of equipment parts. The module has been applied to an important class of semiconductor processes, ion-implantation, for the prediction of ion-source tungsten filament breaks. The PdM has been tested on a real production dataset. © 2013 IEEE.
Resumo:
In this study, 137 corn distillers dried grains with solubles (DDGS) samples from a range of different geographical origins (Jilin Province of China, Heilongjiang Province of China, USA and Europe) were collected and analysed. Different near infrared spectrometers combined with different chemometric packages were used in two independent laboratories to investigate the feasibility of classifying geographical origin of DDGS. Base on the same dataset, one laboratory developed a partial least square discriminant analysis model and another laboratory developed an orthogonal partial least square discriminant analysis model. Results showed that both models could perfectly classify DDGS samples from different geographical origins. These promising results encourage the development of larger scale efforts to produce datasets which can be used to differentiate the geographical origin of DDGS and such efforts are required to provide higher level food security measures on a global scale.
Resumo:
Classification methods with embedded feature selection capability are very appealing for the analysis of complex processes since they allow the analysis of root causes even when the number of input variables is high. In this work, we investigate the performance of three techniques for classification within a Monte Carlo strategy with the aim of root cause analysis. We consider the naive bayes classifier and the logistic regression model with two different implementations for controlling model complexity, namely, a LASSO-like implementation with a L1 norm regularization and a fully Bayesian implementation of the logistic model, the so called relevance vector machine. Several challenges can arise when estimating such models mainly linked to the characteristics of the data: a large number of input variables, high correlation among subsets of variables, the situation where the number of variables is higher than the number of available data points and the case of unbalanced datasets. Using an ecological and a semiconductor manufacturing dataset, we show advantages and drawbacks of each method, highlighting the superior performance in term of classification accuracy for the relevance vector machine with respect to the other classifiers. Moreover, we show how the combination of the proposed techniques and the Monte Carlo approach can be used to get more robust insights into the problem under analysis when faced with challenging modelling conditions.