228 resultados para MacKay, Barry
SpaceMap - Applying Meta-Heuristics to Real-World Space Allocation problems in Academic Institutions
Resumo:
There is a perception that teaching space in universities is a rather scarce resource. However, some studies have revealed that in many institutions it is actually chronically under-used. Often, rooms are occupied only half the time, and even when in use they are often only half full. This is usually measured by the ‘utilization’ which is defined as the percentage of available ‘seat-hours’ that are employed. Within real institutions, studies have shown that this utilization can often take values as low as 20–40%. One consequence of such a low level of utilization is that space managers are under pressure to make more efficient use of the available teaching space. However, better management is hampered because there does not appear to be a good understanding within space management (near-term planning) of why this happens. This is accompanied, within space planning (long-term planning) by a lack of experise on how best to accommodate the expected low utilizations. This motivates our two main goals: (i) To understand the factors that drive down utilizations, (ii) To set up methods to provide better space planning. Here, we provide quantitative evidence that constraints arising from timetabling and location requirements easily have the potential to explain the low utilizations seen in reality. Furthermore, on considering the decision question ‘Can this given set of courses all be allocated in the available teaching space?’ we find that the answer depends on the associated utilization in a way that exhibits threshold behaviour: There is a sharp division between regions in which the answer is ‘almost always yes’ and those of ‘almost always no’. Through analysis and understanding of the space of potential solutions, our work suggests that better use of space within universities will come about through an understanding of the effects of timetabling constraints and when it is statistically likely that it will be possible for a set of courses to be allocated to a particular space. The results presented here provide a firm foundation for university managers to take decisions on how space should be managed and planned for more effectively. Our multi-criteria approach and new methodology together provide new insight into the interaction between the course timetabling problem and the crucial issue of space planning.
Resumo:
A standard problem within universities is that of teaching space allocation which can be thought of as the assignment of rooms and times to various teaching activities. The focus is usually on courses that are expected to fit into one room. However, it can also happen that the course will need to be broken up, or ‘split’, into multiple sections. A lecture might be too large to fit into any one room. Another common example is that of seminars or tutorials. Although hundreds of students may be enrolled on a course, it is often subdivided into particular types and sizes of events dependent on the pedagogic requirements of that particular course. Typically, decisions as to how to split courses need to be made within the context of limited space requirements. Institutions do not have an unlimited number of teaching rooms, and need to effectively use those that they do have. The efficiency of space usage is usually measured by the overall ‘utilisation’ which is basically the fraction of the available seat-hours that are actually used. A multi-objective optimisation problem naturally arises; with a trade-off between satisfying preferences on splitting, a desire to increase utilisation, and also to satisfy other constraints such as those based on event location and timetabling conflicts. In this paper, we explore such trade-offs. The explorations themselves are based on a local search method that attempts to optimise the space utilisation by means of a ‘dynamic splitting’ strategy. The local moves are designed to improve utilisation and satisfy the other constraints, but are also allowed to split, and un-split, courses so as to simultaneously meet the splitting objectives.
Resumo:
The utilization of the computational Grid processor network has become a common method for researchers and scientists without access to local processor clusters to avail of the benefits of parallel processing for compute-intensive applications. As a result, this demand requires effective and efficient dynamic allocation of available resources. Although static scheduling and allocation techniques have proved effective, the dynamic nature of the Grid requires innovative techniques for reacting to change and maintaining stability for users. The dynamic scheduling process requires quite powerful optimization techniques, which can themselves lack the performance required in reaction time for achieving an effective schedule solution. Often there is a trade-off between solution quality and speed in achieving a solution. This paper presents an extension of a technique used in optimization and scheduling which can provide the means of achieving this balance and improves on similar approaches currently published.