80 resultados para Lymphocyte T CD8
Resumo:
Rationale: IL-17A is purported to help drive early pathogenesis in acute respiratory distress syndrome (ARDS) by enhancing neutrophil recruitment. Whilst IL-17A is the archetypal cytokine of T helper (Th)17 cells, it is produced by a number of lymphocytes, the source during ARDS being unknown. <br/><br/>Objectives: To identify the cellular source and the role of IL17A in the early phase of lung injury<br/><br/>Methods: Lung injury was induced in WT (C57BL/6) and IL-17 KO mice with aerosolised LPS (100 µg) or Pseudomonas aeruginosa infection. Detailed phenotyping of the cells expressing RORγt, the transcriptional regulator of IL-17 production, in the mouse lung at 24 hours was carried out by flow cytometry.<br/> <br/>Measurement and Main Results: A 100-fold reduction in neutrophil infiltration was observed in the lungs of the IL-17A KO compared to wild type (WT) mice. The majority of RORγt+ cells in the mouse lung were the recently identified type 3 innate lymphoid cells (ILC3). Detailed characterisation revealed these pulmonary ILC3s (pILC3s) to be discrete from those described in the gut. The critical role of these cells was verified by inducing injury in Rag2 KO mice which lack T cells but retain ILCs. No amelioration of pathology was observed in the Rag2 KO mice.<br/><br/>Conclusions: IL-17 is rapidly produced during lung injury and significantly contributes to early immunopathogenesis. This is orchestrated largely by a distinct population of pILC3 cells. Modulation of pILC3s’ activity may potentiate early control of the inflammatory dysregulation seen in ARDS, opening up new therapeutic targets.<br/>
Resumo:
<p>Paediatric cardiac catheterizations may result in the administration of substantial amounts of iodinated contrast media and ionizing radiation. The aim of this work was to investigate the effect of iodinated contrast media in combination with in vitro and in vivo X-ray radiation on lymphocyte DNA. Six concentrations of iodine (15, 17.5, 30, 35, 45, and 52.5 mg of iodine per mL blood) represented volumes of iodinated contrast media used in the clinical setting. Blood obtained from healthy volunteers was mixed with iodinated contrast media and exposed to radiation doses commonly used in paediatric cardiac catheterizations (0 mGy, 70 mGy, 140 mGy, 250 mGy and 450 mGy). Control samples contained no iodine. For in vivo experimentation, pre and post blood samples were collected from children undergoing cardiac catheterization, receiving iodine concentrations of up to 51 mg of iodine per mL blood and radiation doses of up to 400 mGy. Fluorescence microscopy was performed to assess γH2AX-foci induction, which corresponded to the number of DNA double-strand breaks. The presence of iodine in vitro resulted in significant increases of DNA double-strand breaks beyond that induced by radiation for ≥17.5 mg/mL iodine to blood. The in vivo effects of contrast media on children undergoing cardiac catheterization resulted in a 19% increase in DNA double-strand breaks in children receiving an average concentration of 19 mg/mL iodine to blood. A larger investigation is required to provide further information of the potential benefit of lowering the amount of iodinated contrast media received during X-ray radiation investigations. </p>
Resumo:
<p>Immunotherapy treatments for cancer are becoming increasingly successful, however to further improve our understanding of the T-cell recognition involved in effective responses and to encourage moves towards the development of personalised treatments for leukaemia immunotherapy, precise antigenic targets in individual patients have been identified. Cellular arrays using peptide-MHC (pMHC) tetramers allow the simultaneous detection of different antigen specific T-cell populations naturally circulating in patients and normal donors. We have developed the pMHC array to detect CD8+ T-cell populations in leukaemia patients that recognise epitopes within viral antigens (cytomegalovirus (CMV) and influenza (Flu)) and leukaemia antigens (including Per Arnt Sim domain 1 (PASD1), MelanA, Wilms' Tumour (WT1) and tyrosinase). We show that the pMHC array is at least as sensitive as flow cytometry and has the potential to rapidly identify more than 40 specific T-cell populations in a small sample of T-cells (0.8-1.4 x 106). Fourteen of the twenty-six acute myeloid leukaemia (AML) patients analysed had T cells that recognised tumour antigen epitopes, and eight of these recognised PASD1 epitopes. Other tumour epitopes recognised were MelanA (n = 3), tyrosinase (n = 3) and WT1126-134 (n = 1). One of the seven acute lymphocytic leukaemia (ALL) patients analysed had T cells that recognised the MUC1950-958 epitope. In the future the pMHC array may be used provide point of care T-cell analyses, predict patient response to conventional therapy and direct personalised immunotherapy for patients.</p>
Resumo:
The lymphocyte adaptor protein (LNK) is one of a family of adaptor proteins involved cell signalling and control of B cell populations. It has a critical role in regulation of signalling in hematopoiesis. Lnk negatively regulates cytokine initiated cell signalling and it functions as a negative regulator of the mutant protein in myeloproliferative neoplasms JAK2V617F. A number of mutations in LNK have been described in a variety of myeloproliferative neoplasms some of which have been demonstrated to cause increased cellular proliferation. The majority of mutations occur in exon 2. In a small number of cases idiopathic erythrocytosis with subnormal erythropoietin levels LNK mutations have been found which may account for the clinical phenotype. Thus investigation for LNK mutations should be considered in the investigation of idiopathic erythrocytosis and perhaps other myeloproliferative neoplasms.
A BRCA1 deficient, NFκB driven immune signal predicts good outcome in triple negative breast cancer
Resumo:
<p>Triple negative (TNBCs) and the closely related Basal-like (BLBCs) breast cancers are a loosely defined collection of cancers with poor clinical outcomes. Both show strong similarities with BRCA1-mutant breast cancers and BRCA1 dysfunction, or 'BRCAness', is observed in a large proportion of sporadic BLBCs. BRCA1 expression and function has been shown in vitro to modulate responses to radiation and chemotherapy. Exploitation of this knowledge in the treatment of BRCA1-mutant patients has had varying degrees of success. This reflects the significant problem of accurately detecting those patients with BRCA1 dysfunction. Moreover, not all BRCA1 mutations/loss of function result in the same histology/pathology or indeed have similar effects in modulating therapeutic responses. Given the poor clinical outcomes and lack of targeted therapy for these subtypes, a better understanding of the biology underlying these diseases is required in order to develop novel therapeutic strategies.We have discovered a consistent NFκB hyperactivity associated with BRCA1 dysfunction as a consequence of increased Reactive Oxygen Species (ROS). This biology is found in a subset of BRCA1-mutant and triple negative breast cancer cases and confers good outcome. The increased NFκB signalling results in an anti-tumour microenvironment which may allow CD8+ cytotoxic T cells to suppress tumour progression. However, tumours lacking this NFκB-driven biology have a more tumour-promoting environment and so are associated with poorer prognosis. Tumour-derived gene expression data and cell line models imply that these tumours may benefit from alternative treatment strategies such as reprogramming the microenvironment and targeting the IGF and AR signalling pathways.</p>