87 resultados para Ly-alpha Forest


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A Holocene palaeoecological sequence from Villaverde, south-central Spain, is presented. The pollen stratigraphy is used to infer past vegetation changes within a catchment area that represents the boundary between semi-arid, plateau and mountain vegetation. From c. 9700–7530 cal. yr BP, Pinus is dominant, probably as a result of a combination of a relatively dry climate and natural fire disturbance. From c. 7530–5900 cal. yr BP, moderate invasion by Quercus appears to be a migrational response following increased moisture and temperature, but in part shaped by competitive adjustments. From c. 5900–5000 cal. yr BP, the pine forests are replaced by deciduous-Quercus forests with an important contribution from Corylus, Betula, Fraxinus and Alnus. Mediterranean-type forests spread from c. 5000 to 1920 cal. yr BP coincident with expansions of Artemisia, Juniperus and other xerophytes. From c. 1920–1160 cal. yr BP, Pinus becomes dominant after a disturbance- mediated invasion of the oak forests. Human impact upon the regional landscape was negligible during the Neolithic, and limited in the Bronze and Iron Ages. Local deforestation and the expansion of agro-pastoral activities occur after c. 1600 cal. yr BP.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ataxia with vitamin E deficiency is caused by mutations in a-tocopherol transfer protein (a-TTP) gene and it can be experimentally generated in mice by a-TTP gene inactivation (a-TTP-KO). This study compared a-tocopherol (a-T) concentrations of five brain regions and of four peripheral organs from 5 months old, male and female, wild-type (WT) and a-TTP-KO mice. All brain regions of female WT mice contained significantly higher a-T than those from WT males. a-T concentration in the cerebellum was significantly lower than that in other brain regions of WT mice. These sex and regional differences in brain a-T concentrations do not appear to be determined by a-TTP expression which was undetectable in all brain regions. All the brain regions of a-TTP-KO mice were severely depleted in a-T. The concentration of another endogenous antioxidant, total glutathione, was unaffected by gender but was decreased slightly but significantly in most brain regions of a-TTP-KO mice. The results show that both gender and the hepatic a-TTP, but not brain a-TTP gene expression are important in determining a-T concentrations within the brain. Interestingly, functional abnormality (ataxia) develops only very late in a-TTP-KO mice in spite of the severe a-tocopherol deficiency in the brain starting at an early age.