97 resultados para Larval morphology


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The increasing demand for fast air transportation around the clock
has increased the number of night flights in civil aviation over
the past few decades. In night aviation, to land an aircraft, a
pilot needs to be able to identify an airport. The approach
lighting system (ALS) at an airport is used to provide
identification and guidance to pilots from a distance. ALS
consists of more than $100$ luminaires which are installed in a
defined pattern following strict guidelines by the International
Civil Aviation Organization (ICAO). ICAO also has strict
regulations for maintaining the performance level of the
luminaires. However, once installed, to date there is no automated
technique by which to monitor the performance of the lighting. We
suggest using images of the lighting pattern captured using a camera
placed inside an aircraft. Based on the information contained
within these images, the performance of the luminaires has to be
evaluated which requires identification of over $100$ luminaires
within the pattern of ALS image. This research proposes analysis
of the pattern using morphology filters which use a variable
length structuring element (VLSE). The dimension of the VLSE changes
continuously within an image and varies for different images.
A novel
technique for automatic determination of the VLSE is proposed and
it allows successful identification of the luminaires from the
image data as verified through the use of simulated and real data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Porous titanium samples were manufactured using the 3D printing and sintering method in order to determine the effects of final sintering temperature on morphology and mechanical properties. Cylindrical samples were printed and split into groups according to a final sintering temperature (FST). Irregular geometry samples were also printed and split into groups according to their FST. The cylindrical samples were used to determine part shrinkage, in compressive tests to provide stress-strain data, in microCT scans to provide internal morphology data and for optical microscopy to determine surface morphology. All of the samples were used in microhardness testing to establish the hardness. Below 1100 C FST, shrinkage was in the region of 20% but increased to approximately 30% by a FST of 1300 C. Porosity varied from a maximum of approximately 65% at the surface to the region of 30% internally. Between 97 and 99% of the internal porosity is interconnected. Average pore size varied between 24 µm at the surface and 19 µm internally. Sample hardness increased to in excess of 300 HV0.05 with increasing FST while samples with an FST of below 1250 C produced an elastic-brittle stress/strain curve and samples above this displayed elastic-plastic behaviour. Yield strength increased significantly through the range of sintering temperatures while the Young's modulus remained fairly consistent. © 2013 Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Carbon nanotubes can be grown as forests of aligned fibers on a substrate with a catalyst coated prior to or added during synthesis. A major process interruption can initiate the growth of second and successive layers of forest on top or at the base of the existing layers which are thereby lifted up. We report on the generation of multilayer CNT forests where the first forest is generated either by catalyst coinjection (CCI) of ferrocene with hydrocarbon (xylene) or by catalyst predeposition (CPD) of iron followed with hydrocarbon (acetylene). Subsequent layers are then produced by CCI alone to give uniform (all CCI) or mixed (CPD and CCI) structures to study the distribution of the iron catalyst and CNT morphology and to determine whether the CPD forest templates or otherwise influences the growth of subsequent CCI forests. The bottom-up base growth of second and subsequent CCI forests is reaction rate controlled. CCI multilayer forests accumulate catalyst (iron) in a variety of distinct locations. A pre-existing CPD forest modifies subsequent CCI forest initiation, morphology, and catalyst distribution but does not itself accumulate catalyst or change appearance. © 2009 American Chemical Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Organotypic models may provide mechanistic insight into colorectal cancer (CRC) morphology. Three-dimensional (3D) colorectal gland formation is regulated by phosphatase and tensin homologue deleted on chromosome 10 (PTEN) coupling of cell division cycle 42 (cdc42) to atypical protein kinase C (aPKC). This study investigated PTEN phosphatase-dependent and phosphatase-independent morphogenic functions in 3D models and assessed translational relevance in human studies. Isogenic PTEN-expressing or PTEN-deficient 3D colorectal cultures were used. In translational studies, apical aPKC activity readout was assessed against apical membrane (AM) orientation and gland morphology in 3D models and human CRC. We found that catalytically active or inactive PTEN constructs containing an intact C2 domain enhanced cdc42 activity, whereas mutants of the C2 domain calcium binding region 3 membrane-binding loop (M-CBR3) were ineffective. The isolated PTEN C2 domain (C2) accumulated in membrane fractions, but C2 M-CBR3 remained in cytosol. Transfection of C2 but not C2 M-CBR3 rescued defective AM orientation and 3D morphogenesis of PTEN-deficient Caco-2 cultures. The signal intensity of apical phospho-aPKC correlated with that of Na/H exchanger regulatory factor-1 (NHERF-1) in the 3D model. Apical NHERF-1 intensity thus provided readout of apical aPKC activity and associated with glandular morphology in the model system and human colon. Low apical NHERF-1 intensity in CRC associated with disruption of glandular architecture, high cancer grade, and metastatic dissemination. We conclude that the membrane-binding function of the catalytically inert PTEN C2 domain influences cdc42/aPKC-dependent AM dynamics and gland formation in a highly relevant 3D CRC morphogenesis model system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Porous poly-L-lactide acid (PLA) scaffolds are prepared using polymer sintering and porogen leaching method. Different weight fractions of the Hydroxyapatite (HA) are added to the PLA to control the acidity and degradation rate. The three dimensional morphology and surface porosity are tested using micro CT, optical microscopy and scanning electron microscopy (SEM). Results indicate that the surface porosity does not change by addition of HA. The micro Ct examinations show slight decrease in the pore size and increase in wall thickness accompanied with reduced anisotropy for the scaffolds containing HA. SEM micrographs show detectable interconnected pores for the scaffold with pure PLA. Addition of the HA results in agglomeration of the HA which blocks some of the pores. Compression tests of the scaffold identify three stages in the stress-strain curve. The addition of HA adversely affects the modulus of the scaffold at the first stage, but this was reversed for the second and third stages of the compression. The results of these tests are compared with the cellular material model. The manufactured scaffold have acceptable properties for a scaffold, however improvement to the mixing of the phases of PLA and HA is required to achieve better integrity of the composite scaffolds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Porous poly(L-lactic acid) (PLA) scaffolds of 85 per cent and 90 per cent porosity are prepared using polymer sintering and porogen leaching method. Different weight fractions of 10 per cent, 30 per cent, and 50 per cent of hydroxyapatite (HA) are added to the PLA to control the acidity and degradation rate. The three-dimensional (3D) morphology and surface porosity are tested using micro-computer tomography (micro-CT), optical microscopy, and scanning electron microscopy (SEM). Results indicate that the surface porosity does not change on the addition of HA. The micro-CT examinations show a slight decrease in the pore size and increase in the wall thickness accompanied by reduced anisotropy for the scaffolds containing HA. Scanning electron micrographs show detectable interconnected pores for the scaffold with pure PLA. Addition of the HA results in agglomeration of the HA particles and reduced leaching of the porogen. Compression tests of the scaffold identify three stages in the stress-strain curve. The addition of HA results in a reduction in the modulus of the scaffold at the first stage of elastic bending of the wall, but this is reversed for the second and third stages of collapse of the wall and densification in the compression tests. In the scaffolds with 85 per cent porosity, the addition of a high percentage of HA could result in 70 per cent decrease in stiffness in the first stage, 200 per cent increase in stiffness in the second stage, and 20 per cent increase in stiffness in the third stage. The results of these tests are compared with the Gibson cellular material model that is proposed for prediction of the behaviour of cellular material under compression. The pH and molecular weight changes are tracked for the scaffolds within a period of 35 days. The addition of HA keeps the pH in the alkaline region, which results in higher rate of degradation at an early period of observation, followed by a reduced rate of degradation later in the process. The final molecular weight is higher for the scaffolds with HA than for scaffolds of pure PLA. The manufactured scaffolds offer acceptable properties in terms of the pore size range and interconnectivity of the pores and porosity for non-load-bearing bone graft substitute; however, improvement to the mixing of the phases of PLA and HA is required to achieve better integrity of the composite scaffolds. © 2008 IMechE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Domain microstructures in single crystal lamellae of 88%Pb(Zn1/3Nb2/3)O3-12%PbTiO3 (cut from bulk using focused ion beam milling) have been mapped using both piezoresponse force microscopy and transmission electron microscopy. Dramatic changes from mottled microstructures typical of relaxors to larger scale domains typical of ferroelectrics have been noted. Stresses associated with substrate clamping are suspected as the cause for the transition from short- to long-range polar order, akin to effects induced by cation ordering achieved by thermal quenching.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The light output from nominally smooth Al-Ox-Au tunnel junctions is observed to be substantially independent of the deposition rate of the Au film electrode. Films deposited quickly (2 nm s-1) and those deposited slowly (0.16 nm s-1) have similar spectral dependences and intensities. (This is in contrast to roughened films where those deposited quickly give out less light, especially towards the blue end of the spectrum.) The behaviour can be interpreted in terms of the ratio l(ph)/l(em) where l(ph) and l(em) are the mean free paths of surface plasmons between external photon emissions and internal electromagnetic absorptions respectively. Once l(ph)/l(em) exceeds 100, as it does on smooth films, grain size has little further effect on the spectral shape of the light output. In fast-deposited films there are two compensating effects on the output intensity: grain boundary scattering decreases it and greater surface roughness increases it.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

1-Hydroxy-1,2-benziodoxol-3(1H)-one I-oxide prepared by oxidation of o-iodobenzoic acid with potassium bromate forms either a microcrystalline powder, a macrocrystalline material, or a mixture of both forms. This difference in physical form is the source of the difficulty in reproducibly converting 1-hydroxy-1,2-benziodoxol-3(1H)-one 1-oxide to the corresponding I-triacetoxy derivative. A simple method is given for conversion of crystalline 1-hydroxy-1,2-benziodoxol-3(1H)-one 1-oxide to the more reactive powder form, The microcrystalline powder and macrocrystalline material are characterised by X-ray diffraction.