203 resultados para L cell
Resumo:
In intestinal epithelial cells, inactivation of APC, a key regulator of the Wnt pathway, activates beta-catenin to initiate tumorigenesis. However, other alterations may be involved in intestinal tumorigenesis. Here we found that RUNX3, a gastric tumor suppressor, forms a ternary complex with beta-catenin/7CF4 and attenuates Wnt signaling activity. A significant fraction of human sporadic colorectal adenomas and Runx3(+/-) mouse intestinal adenomas showed inactivation of RUNX3 without apparent beta-catenin accumulation, indicating that RUNX3 inactivation independently induces intestinal adenomas. In human colon cancers, RUNX3 is frequently inactivated with concomitant beta-catenin accumulation, suggesting that adenomas induced by inactivation of RUNX3 may progress to malignancy. Taken together, these data demonstrate that RUNX3 functions as a tumor suppressor by attenuating Wnt signaling.
Resumo:
Desmoplastic small round cell tumor (DSRCT) is a rare undifferentiated neoplasm. The prognosis is poor, even if therapy is instituted promptly. and thus it is important to differentiate it from other histologically and cytologically similar-looking malignancies of the young adult. We present a case of DSRCT in a 17-yr-old male with disseminated peritoneal disease and peritoneal effusion. The cytology sample showed a malignant small round cell tumor, the classical cytological features of DSRCT, and immunohistochemistry performed in the prepared cell block exhibited an antibody expression profile in keeping with DSRCT. Further material front the effusion was prepared for RNA extraction, following which a reverse-transcriptase polymerase chain reaction (RTPCR) and sequencing of the t(l l;22)(p13;q11 or q12) were carried out. The result showed the presence of the reciprocal translocation and thus confirmed the diagnosis of DSRCT. This case shows how molecular techniques (including sequencing) call be applied to cytology in clarifying and confirming certain difficult diagnosis of undifferentiated neoplasms, DSRCT in this particular case. Diagn. Cytopathol. 2003;29:341-343. (C) 2003 Wiley-Liss. Inc.
Resumo:
The t(11; 17)(q23;q21) translocation is associated with a retinoic acid (RA)-insensitive form of acute promyelocytic leukemia (APL), involving the production of reciprocal fusion proteins, promyelocytic leukemia zinc finger-retinoic acid receptor alpha (PLZF-RAR alpha) and RAR alpha-PLZF. Using a combination of chromatin immuno-precipitation promotor arrays (ChIP-chip) and gene expression profiling, we identify novel, direct target genes of PLZF-RAR alpha that tend to be repressed in APL compared with other myeloid leukemias, supporting the role of PLZF-RAR alpha as an aberrant repressor in APL. In primary murine hematopoietic progenitors, PLZF-RAR alpha promotes cell growth, and represses Dusp6 and Cdkn2d, while inducing c-Myc expression, consistent with its role in leukemogenesis. PLZF-RAR alpha binds to a region of the c-MYC promoter overlapping a functional PLZF site and antagonizes PLZF-mediated repression, suggesting that PLZF-RAR alpha may act as a dominant-negative version of PLZF by affecting the regulation of shared targets. RA induced the differentiation of PLZF-RAR alpha-transformed murine hematopoietic cells and reduced the frequency of clonogenic progenitors, concomitant with c-Myc down-regulation. Surviving RA-treated cells retained the ability to be replated and this was associated with sustained c-Myc expression and repression of Dusp6, suggesting a role for these genes in maintaining a self-renewal pathway triggered by PLZF-RAR alpha. (Blood. 2009; 114: 5499-5511)
Resumo:
AIMS/HYPOTHESIS: Atherosclerosis, which occurs prematurely in individuals with diabetes, incorporates vascular smooth muscle cell (VSMC) chemotaxis. Glucose, through protein kinase C-beta(II) signalling, increases chemotaxis to low concentrations of platelet-derived growth factor (PDGF)-BB. In VSMC, a biphasic response in PDGF-beta receptor (PDGF-betaR) level occurs as PDGF-BB concentrations increase. The purpose of this study was to determine whether increased concentrations of PDGF-BB and raised glucose level had a modulatory effect on the mitogen-activated protein kinase/extracellular-regulated protein kinase pathway, control of PDGF-betaR level and chemotaxis.
METHODS: Cultured aortic VSMC, exposed to normal glucose (NG) (5 mmol/l) or high glucose (HG) (25 mmol/l) in the presence of PDGF-BB, were assessed for migration (chemotaxis chamber) or else extracted and immunoblotted.
RESULTS: At concentrations of PDGF-BB <540 pmol/l, HG caused an increase in the level of PDGF-betaR in VSMC (immunoblotting) versus NG, an effect that was abrogated by inhibition of aldose reductase or protein kinase C-beta(II). At higher concentrations of PDGF-BB (>540 pmol/l) in HG, receptor level was reduced but in the presence of aldose reductase or protein kinase C-beta(II) inhibitors the receptor levels increased. It is known that phosphatases may be activated at high concentrations of growth factors. At high concentrations of PDGF-BB, the protein phosphatase (PP)2A inhibitor, endothall, caused an increase in PDGF-betaR levels and a loss of biphasicity in receptor levels in HG. At higher concentrations of PDGF-BB in HG, the chemoattractant effect of PDGF-BB was lost (chemotaxis chamber). Under these conditions inhibition of PP2A was associated with a restoration of chemotaxis to high concentrations of PDGF-BB.
CONCLUSION/INTERPRETATION: The biphasic response in PDGF-betaR level and in chemotaxis to PDGF-BB in HG is due to PP2A activation.
Resumo:
The transcription factors Pea3, Erm, and Er81 can promote cancer initiation and progression in various types of solid tumors. However, their role in esophageal squamous cell carcinoma (ESCC) has not been elucidated. In this study, we found that the expression levels of Pea3 and Erm, but not that of Er81, were significantly higher in ESCC compared with nontumor esophageal epithelium. A high level of Pea3 expression was significantly correlated with a shorter overall survival in a cohort of 81 patients with ESCC and the subgroup with N1 stage tumor (Wilcoxon-Gehan test, P = 0.016 and P = 0.001, respectively). Pea3 was overexpressed in seven ESCC cell lines compared with two immortalized esophageal cell lines. Pea3 knockdown reduced cell proliferation and suppressed nonadherent growth, migration, and invasion in ESCC cells in vitro. In addition, Pea3 knockdown in ESCC cells resulted in a down-regulation of phospho-Akt and matrix metalloproteinase 13, whereas a significant positive correlation in the expression levels was observed between Pea3 and phospho-Akt (r = 0.281, P
Resumo:
The expansion of a dense plasma through a more rarefied ionized medium has been studied by means of two-dimensional particle-in-cell simulations. The initial conditions involve a density jump by a factor of 100, located in the middle of an otherwise equally dense electron-proton plasma with uniform proton and electron temperatures of 10 eV and 1 keV, respectively. Simulations show the creation of a purely electrostatic collisionless shock together with an ion-acoustic soliton tied to its downstream region. The shock front is seen to evolve in filamentary structures consistently with the onset of the ion-ion instability. Meanwhile, an un-magnetized drift instability is triggered in the core part of the dense plasma. Such results explain recent experimental laser-plasma experiments, carried out in similar conditions, and are of intrinsic relevance to non-relativistic shock scenarios in the solar and astrophysical systems.
Resumo:
Over the last decade a significant number of studies have highlighted the central role of host antimicrobial (or defence) peptides in modulating the response of innate immune cells to pathogen-associated ligands. In humans, the most widely studied antimicrobial peptide is LL-37, a 37-residue peptide containing an amphipathic helix that is released via proteolytic cleavage of the precursor protein CAP18. Owing to its ability to protect against lethal endotoxaemia and clinically-relevant bacterial infections, LL-37 and its derivatives are seen as attractive candidates for anti-sepsis therapies. We have identified a novel family of molecules secreted by parasitic helminths (helminth defence molecules; HDMs) that exhibit similar biochemical and functional characteristics to human defence peptides, particularly CAP18. The HDM secreted by Fasciola hepatica (FhHDM-1) adopts a predominantly alpha-helical structure in solution. Processing of FhHDM-1 by F. hepatica cathepsin L1 releases a 34-residue C-terminal fragment containing a conserved amphipathic helix. This is analogous to the proteolytic processing of CAP18 to release LL-37, which modulates innate cell activation by classical toll-like receptor (TLR) ligands such as lipopolysaccharide (LPS). We show that full-length recombinant FhHDM-1 and a peptide analogue of the amphipathic C-terminus bind directly to LPS in a concentration-dependent manner, reducing its interaction with both LPS-binding protein (LBP) and the surface of macrophages. Furthermore, FhHDM-1 and the amphipathic C-terminal peptide protect mice against LPS-induced inflammation by significantly reducing the release of inflammatory mediators from macrophages. We propose that HDMs, by mimicking the function of host defence peptides, represent a novel family of innate cell modulators with therapeutic potential in anti-sepsis treatments and prevention of inflammation.
Resumo:
Cationic antimicrobial agents may prevent device-associated infections caused by Staphylococcus epidermidis and Staphylococcus aureus. This study reports that the cationic antimicrobial polymer poly(2-(dimethylamino ethyl)methacrylate) (pDMAEMA) was more effective at antagonizing growth of clinical isolates of S. epidermidis than of S. aureus. Importantly, mature S. epidermidis biofilms were significantly inactivated by pDMAEMA. The S. aureus isolates tested were generally more hydrophobic than the S. epidermidis isolates and had a less negative charge, although a number of individual S. aureus and S. epidermidis clinical isolates had similar surface hydrophobicity and charge values. Fluorescence spectroscopy and flow cytometry revealed that fluorescently labelled pDMAEMA interacted strongly with S. epidermidis compared with S. aureus. S. aureus Delta dltA and Delta mprF mutants were less hydrophobic and therefore more susceptible to pDMAEMA than wild-type S. aureus. Although the different susceptibility of S. epidermidis and S. aureus isolates to pDMAEMA is complex, influenced in part by surface hydrophobicity and charge, these findings nevertheless reveal the potential of pDMAEMA to treat S. epidermidis infections.
Resumo:
Chinese hamster V79 fibroblasts were irradiated in the gas explosion apparatus and the chemical repair rates of the oxygen-dependent free radical precursors of DNA double-strand breaks (dsb) and lethal lesions measured using filter elution (pH 9.6) and a clonogenic assay. Depletion of cellular GSH levels, from 4.16 fmol/cell to 0.05 fmol/cell, by treatment with buthionine sulphoximine (50 mumol dm-3; 18 h), led to sensitization as regards DNA dsb induction and cell killing. This was evident at all time settings but was particularly pronounced when the oxygen shot was given 1 ms after the irradiation pulse. A detailed analysis of the chemical repair kinetics showed that depletion of GSH led to a reduction in the first-order rate constant for dsb precursors from 385 s-1 to 144 s-1, and for lethal lesion precursors from 533 s-1 to 165 s-1. This is generally consistent with the role of GSH in the repair-fixation model of radiation damage at the critical DNA lesions. However, the reduction in chemical repair rate was not proportional to the severe thiol depletion (down to almost-equal-to 1% for GSH) and a residual repair capacity remained (almost-equal-to 30%). This was found not to be due to compartmentalization of residual GSH in the nucleus, as the repair rate for dsb precursors in isolated nuclei, washed virtually free of GSH, was identical to that found in GSH-depleted cells (144 s-1), also the OER remained substantially above unity. This suggests that other reducing agents may have a role to play in the chemical repair of oxygen-dependent damage. One possible candidate is the significant level of protein sulphydryls present in isolated nuclei.
Resumo:
1 Neuropeptide-induced histamine release is thought to occur via receptor-independent mechanisms, with net charge and lipophilicity being important factors.