134 resultados para JEL classification codes: L15
Resumo:
Color segmentation of images usually requires a manual selection and classification of samples to train the system. This paper presents an automatic system that performs these tasks without the need of a long training, providing a useful tool to detect and identify figures. In real situations, it is necessary to repeat the training process if light conditions change, or if, in the same scenario, the colors of the figures and the background may have changed, being useful a fast training method. A direct application of this method is the detection and identification of football players.
Resumo:
In this paper, a hardware solution for packet classification based on multi-fields is presented. The proposed scheme focuses on a new architecture based on the decomposition method. A hash circuit is used in order to reduce the memory space required for the Recursive Flow Classification (RFC) algorithm. The implementation results show that the proposed architecture achieves significant performance advantage that is comparable to that of some well-known algorithms. The solution is based on Altera Stratix III FPGA technology.
Resumo:
Automatic gender classification has many security and commercial applications. Various modalities have been investigated for gender classification with face-based classification being the most popular. In some real-world scenarios the face may be partially occluded. In these circumstances a classification based on individual parts of the face known as local features must be adopted. We investigate gender classification using lip movements. We show for the first time that important gender specific information can be obtained from the way in which a person moves their lips during speech. Furthermore our study indicates that the lip dynamics during speech provide greater gender discriminative information than simply lip appearance. We also show that the lip dynamics and appearance contain complementary gender information such that a model which captures both traits gives the highest overall classification result. We use Discrete Cosine Transform based features and Gaussian Mixture Modelling to model lip appearance and dynamics and employ the XM2VTS database for our experiments. Our experiments show that a model which captures lip dynamics along with appearance can improve gender classification rates by between 16-21% compared to models of only lip appearance.
Resumo:
PURPOSE. To describe and classify patterns of abnormal fundus autofluorescence (FAF) in eyes with early nonexudative age-related macular disease (AMD). METHODS. FAF images were recorded in eyes with early AMD by confocal scanning laser ophthalmoscopy (cSLO) with excitation at 488 nm (argon or OPSL laser) and emission above 500 or 521 nm (barrier filter). A standardized protocol for image acquisition and generation of mean images after automated alignment was applied, and routine fundus photographs were obtained. FAF images were classified by two independent observers. The ? statistic was applied to assess intra- and interobserver variability. RESULTS. Alterations in FAF were classified into eight phenotypic patterns including normal, minimal change, focal increased, patchy, linear, lacelike, reticular, and speckled. Areas with abnormal increased or decreased FAF signals may or may not have corresponded to funduscopically visible alterations. For intraobserver variability, ? of observer I was 0.80 (95% confidence interval [CI]0.71-0.89) and of observer II, 0.74. (95% CI, 0.64-0.84). For interobserver variability, ? was 0.77 (95% CI, 0.67-0.87). CONCLUSIONS. Various phenotypic patterns of abnormal FAF can be identified with cSLO imaging. Distinct patterns may reflect heterogeneity at a cellular and molecular level in contrast to a nonspecific aging process. The results indicate that the classification system yields a relatively high degree of intra- and interobserver agreement. It may be applicable for determination of novel prognostic determinants in longitudinal natural history studies, for identification of genetic risk factors, and for monitoring of future therapeutic interventions to slow the progression of early AMD. Copyright © Association for Research in Vision and Ophthalmology.
Resumo:
Background - Iris cysts in children are uncommon and there is relatively little information on their classification, incidence, and management. Methods - The records of all children under age 20 years who were diagnosed with iris cyst were reviewed and the types and incidence of iris cysts of childhood determined. Based on these observations recommendations were made regarding management of iris cysts in children. Results - Of 57 iris cysts in children, 53 were primary and four were secondary. There were 44 primary cysts of the iris pigment epithelium, 34 of which were of the peripheral or iridociliary type, accounting for 59% of all childhood iris cysts. It was most commonly diagnosed in the teenage years, more common in girls (68%), was not recognised in infancy, remained stationary or regressed, and required no treatment. The five mid-zonal pigment epithelial cysts were diagnosed at a mean age of 14 years, were more common in boys (83%), remained stationary, and required no treatment. The pupillary type of pigment epithelial cyst was generally recognised in infancy and, despite involvement of the pupillary aperture, also required no treatment. There were nine cases of primary iris stromal cysts, accounting for 16% of all childhood iris cysts. This cyst was usually diagnosed in infancy, was generally progressive, and required treatment in eight of the nine cases, usually by aspiration and cryotherapy or surgical resection. Among the secondary iris cysts, two were post-traumatic epithelial ingrowth cysts and two were tumour induced cysts, one arising from an intraocular lacrimal gland choristoma and one adjacent to a peripheral iris naevus. Conclusions - Most iris cysts of childhood are primary pigment epithelial cysts and require no treatment. However, the iris stromal cyst, usually recognised in infancy, is generally an aggressive lesion that requires treatment by aspiration or surgical excision.
Resumo:
During recent years, the increasing knowledge of genetic and physiological changes in polycythemia vera (PV) and of different types of congenital erythrocytosis has led to fundamental changes in recommendations for the diagnostic approach to patients with erythrocytosis. Although widely accepted for adult patients this approach may not be appropriate with regard to children and adolescents affected by erythrocytosis. The "congenital erythrocytosis" working group established within the framework of the MPN&MPNr-EuroNet (COST action BM0902) addressed this question in a consensus finding process and developed a specific algorithm for the diagnosis of erythrocytosis in childhood and adolescence which is presented here. Pediatr Blood Cancer 2013;9999:XX-XX. © 2013 Wiley Periodicals, Inc.
Resumo:
Mobile malware has been growing in scale and complexity spurred by the unabated uptake of smartphones worldwide. Android is fast becoming the most popular mobile platform resulting in sharp increase in malware targeting the platform. Additionally, Android malware is evolving rapidly to evade detection by traditional signature-based scanning. Despite current detection measures in place, timely discovery of new malware is still a critical issue. This calls for novel approaches to mitigate the growing threat of zero-day Android malware. Hence, the authors develop and analyse proactive machine-learning approaches based on Bayesian classification aimed at uncovering unknown Android malware via static analysis. The study, which is based on a large malware sample set of majority of the existing families, demonstrates detection capabilities with high accuracy. Empirical results and comparative analysis are presented offering useful insight towards development of effective static-analytic Bayesian classification-based solutions for detecting unknown Android malware.