187 resultados para Interstellar hydrogen
Resumo:
Waste glycerol was converted to secondary amines in a one pot reaction, using Clostridium butyricum and catalytic hydrogen transfer-mediated amination.
Resumo:
Collisions between H-3(+) and HD in molecular clouds lead to the fractionation of deuterium in H2D+ at temperatures below 20 K. In this article, we describe the chemistry of H2D+ and discuss how variations in temperature and elemental abundances affect the level of fractionation in H2D+ and other species. We describe how accretion of gas-phase molecules on to cold dust grains enhances the deuteration in several molecules including doubly deuterated molecules. Mie show that the ion-neutral drift velocities attained in slow Alfven waves can destroy H2D+ in non-thermal reactions. As a result, the degree of fractionation can be reduced and we discuss observational consequences of such a model for the dark dust cloud TMC-1.
Resumo:
The Galactic Centre is the most active and heavily processed region of the Milky Way, so it can be used as a stringent test for the abundance of deuterium (a sensitive indicator of conditions in the first 1,000 seconds in the life of the Universe). As deuterium is destroyed in stellar interiors, chemical evolution models 1 predict that its Galactic Centre abundance relative to hydrogen is D/H = 5 x 10(-12), unless there is a continuous source of deuterium from relatively primordial (low-metallicity) gas. Here we report the detection of deuterium (in the molecule DCN) in a molecular cloud only 10 parsecs from the Galactic Centre. Our data, when combined with a model of molecular abundances, indicate that D/H = (1.7 +/- 0.3) x 10(-6), five orders of magnitude larger than the predictions of evolutionary models with no continuous source of deuterium. The most probable explanation is recent infall of relatively unprocessed metal-poor gas into the Galactic Centre (at the rate inferred by Wakker(2)). Our measured D/H is nine times less than the local interstellar value, and the lowest D/H observed in the Galaxy. We conclude that the observed Galactic Centre deuterium is cosmological, with an abundance reduced by stellar processing and mixing, and that there is no significant Galactic source of deuterium.
Resumo:
This paper reports the results of models of dark cloud chemistry incorporating a depth dependent density distribution with diffusive mixing and adsorption onto grains. The model is based on the approach taken by Xie et al. (1995), with the addition of grain accretion effects. Without diffusion, the central regions of the cloud freeze out in less than 10(7) years. Freeze-out time is dependent on density, so the diffuse outer region of the cloud remains abundant in gas for about an order of magnitude longer. We find that fairly small amounts of diffusive mixing can delay freeze-out at the centre of the model cloud for a time up to an order of magnitude greater than without diffusion, due to material diffusing inward from the edges of the cloud. The gas-phase lifetime of the cloud core can thus be increased by up to an order of magnitude or more by this process. We have run three different grain models with various diffusion coefficients to investigate the effects of changing the sticking parameters.
Resumo:
Electrochemical oxidation of hydrogen sulfide gas (H2S) has been studied at a platinum microelectrode (10 mu m diameter) in five room temperature ionic liquids (RTILs): [C(4)mim][OTf], [C(4)dmim][NTf2], [C(4)mim][PF6],. [C(6)mim][FAP], and [P-14,P-6,P-6,P-6][FAP] (where [C-n mim](+) = 1-alkyl-3-methylimidazolium, [C(n)dmim](+) = 1-alkyl-2,3-dimethylimidazolium, [P-14,P-6,P-6,P-6](+) = tris(p-hexyl)-tetradecylphosphonium, [OTf](-) = trifluoromethlysulfonate, [NTf2](-) = bis(trifluoromethylsulfonyl)imide, [PF6](-) = hexafluorophosphate, and [FAP](-) = trifluorotris(pentafluoroethyl)phosphate). In four of the RTILs ([C(4)dmim][NTf2], [C(4)mim][PF6], [C(6)mim][FAP], and [P-14,P-6,P-6,P-6][FAP]), no clear oxidative signal was observed. In [C(4)mim][OTf], a chemically irreversible oxidation peak was observed on the oxidative sweep with no signal seen on the reverse scan. The oxidative signal showed an adsorptive stripping peak type followed by near steady-state limiting current behavior. Potential step chronoamperometry was carried out on the reductive wave, giving a diffusion coefficient and solubility of 1.6 x 10(-11) m(2) s(-1) and 7 mM, respectively (at 25 degrees C). Using these data, we modeled the oxidation signal kinetically, assuming adsorption preceded oxidation and that adsorption was approximately Langmuirian. The oxidation step was described by an electrochemically fully irreversible Tafel law/Butler-Volmer formalism. Modeling indicated a substantial buildup of H2S in the double layer in excess of the coverage that would be expected for a monolayer of chemisorbed H2S, reflecting high solubility of the gas in [C(4)mim][OTf] and possible attractive interactions with the [OTf](-) anions accumulated at the electrode at potentials positive of the potential of zero charge. Solute enrichment of the double layer in the solution adjacent to the electrode appears a novel feature of RTIL electrochemistry.
Resumo:
The activation energy for hydrogen abstraction from imidazolium-based ionic liquids is significantly higher than that observed in conventional solvents.
Resumo:
The results of an investigation into the damage caused to dry plasmid DNA after irradiation by fast (keV) hydrogen atoms are presented. Agarose gel electrophoresis was used to assess single and double strand break yields as a function of dose in dry DNA samples deposited on a mica substrate. Damage levels were observed to increase with beam energy. Strand break yields demonstrated a considerable dependence on sample structure and the method of sample preparation. Additionally, the effect of high-Z nanoparticles on damage levels was investigated by irradiating DNA samples containing controlled amounts of gold nanoparticles. In contrast to previous (photonic) studies, no enhancement of strand break yields was observed with the particles showing a slight radioprotective effect. A model of DNA damage as a function of dose has been constructed in terms of the probability for the creation of single and double strand breaks, per unit ion flux. This model provides quantitative conclusions about the effects of both gold nanoparticles and the different buffers used in performing the assays and, in addition, infers the proportion of multiply damaged fragments.
Resumo:
The marine oligotrophic ultramicrobacterium Sphingomonas alaskensis RB2256 has a physiology that is distinctly different from that of typical copiotrophic marine bacteria, such as Vibrio angustum S14. This includes a high level of inherent stress resistance and the absence of starvation-induced stress resistance to hydrogen peroxide. In addition to periods of starvation in the ocean, slow nutrient-limited growth is likely to be encountered by oligotrophic bacteria for substantial periods of time. In this study we examined the effects of growth rate on the resistance of S. alaskensis RB2256 to hydrogen peroxide under carbon or nitrogen limitation conditions in nutrient-limited chemostats. Glucose-limited cultures of S. alaskensis RB2256 at a specific growth rate of 0.02 to 0.13 h(-1) exhibited 10,000-fold-greater viability following 60 min of exposure to 25 mM hydrogen peroxide than tells growing at a rate of 0.14 h(-1) or higher. Growth rate control of stress resistance was found to be specific to carbon and energy limitation in this organism. In contrast, V. angustum S14 did not exhibit growth rate-dependent stress resistance. The dramatic switch in stress resistance that was observed under carbon and energy limitation conditions has not been described previously in bacteria and thus may be a characteristic of the oligotrophic ultramicrobacterium, Catalase activity varied marginally and did not correlate with the growth rate, indicating that hydrogen peroxide breakdown was not the primary mechanism of resistance. More than 1,000 spots were resolved on silver-stained protein gels for cultures growing at rates of 0.026, 0.076, and 0.18 h(-1). Twelve protein spots had intensities that varied by more than twofold between growth rates and hence are likely to be important for growth rate-dependent stress resistance. These studies demonstrated the crucial role that nutrient limitation plays in the physiology of S. alaskensis RB2256, especially under oxidative stress conditions.