79 resultados para IMMUNOHISTOCHEMICAL
Resumo:
Like humans, mice exhibit polymorphism in the N-acetylation of aromatic amines, many of which are toxic and/or carcinogenic. Mice have three N-acetyltransferase (Nat) genes, Nat1, Nat2 and Nat3, and Nat2 is known to be polymorphic. There is a dramatic difference in the acetylation of NAT2 substrates by blood from fast (C57BL/6J) compared with slow acetylator (A/J) mice. However, the acetylation of these substrates by liver cytosols from the two strains is very similar. In order to determine whether the expression of the NAT2 protein corresponded with the activities measured, a polyclonal antipeptide antisera was raised against the C-terminal decapeptide of NAT2 and characterized using recombinant murine NAT2 antigen. Enzyme-linked immunosorbent assays (ELISAs) demonstrated that the anti-NAT2 antiserum bound in a concentration-dependent fashion to recombinant NAT2. Immunochemical analysis of mouse liver cytosols from C57BL/6J or A/J livers indicated that the level of NAT2 protein expressed in the two strains was similar. Immunohistochemical staining of C57BL/6J liver with anti-NAT2 antiserum showed that NAT2 was expressed in hepatocytes throughout the liver although the intensity of staining in the perivenous (centrilobular) region was higher than that in the periportal region. NAT2 was also detected in epithelial cells in the lung, kidney, bladder, small intestine and skin as well as in erythrocytes and lymphocytes in the spleen and hair follicles and sebaceous glands in the skin. Characterization of the distribution of NAT2 will be of value in elucidating the role of polymorphic N-acetylation in protecting the organism from environmental insults as well as in endogenous metabolism.
Resumo:
PURPOSE: It is widely held that neurons of the central nervous system do not store glycogen and that accumulation of the polysaccharide may cause neurodegeneration. Since primary neural injury occurs in diabetic retinopathy, we examined neuronal glycogen status in the retina of streptozotocin-induced diabetic and control rats.
METHODS: Glycogen was localized in eyes of streptozotocin-induced diabetic and control rats using light microscopic histochemistry and electron microscopy, and correlated with immunohistochemical staining for glycogen phosphorylase and phosphorylated glycogen synthase (pGS).
RESULTS: Electron microscopy of 2-month-old diabetic rats (n = 6) showed massive accumulations of glycogen in the perinuclear cytoplasm of many amacrine neurons. In 4-month-old diabetic rats (n = 11), quantification of glycogen-engorged amacrine cells showed a mean of 26 cells/mm of central retina (SD ± 5), compared to 0.5 (SD ± 0.2) in controls (n = 8). Immunohistochemical staining for glycogen phosphorylase revealed strong expression in amacrine and ganglion cells of control retina, and increased staining in cell processes of the inner plexiform layer in diabetic retina. In control retina, the inactive pGS was consistently sequestered within the cell nuclei of all retinal neurons and the retinal pigment epithelium (RPE), but in diabetics nuclear pGS was reduced or lost in all classes of retinal cell except the ganglion cells and cone photoreceptors.
CONCLUSIONS: The present study identifies a large population of retinal neurons that normally utilize glycogen metabolism but show pathologic storage of the polysaccharide during uncontrolled diabetes.
Resumo:
PTEN loss is prognostic for patient relapse post-radiotherapy in prostate cancer (CaP). Infiltration of tumor-associated macrophages (TAMs) is associated with reduced disease-free survival following radical prostatectomy. However, the association between PTEN loss, TAM infiltration and radiotherapy response of CaP cells remains to be evaluated. Immunohistochemical and molecular analysis of surgically-resected Gleason 7 tumors confirmed that PTEN loss correlated with increased CXCL8 expression and macrophage infiltration. However PTEN status had no discernable correlation with expression of other inflammatory markers by CaP cells, including TNF-α. In vitro, exposure to conditioned media harvested from irradiated PTEN null CaP cells induced chemotaxis of macrophage-like THP-1 cells, a response partially attenuated by CXCL8 inhibition. Co-culture with THP-1 cells resulted in a modest reduction in the radio-sensitivity of DU145 cells. Cytokine profiling revealed constitutive secretion of TNF-α from CaP cells irrespective of PTEN status and IR-induced TNF-α secretion from THP-1 cells. THP-1-derived TNF-α increased NFκB pro-survival activity and elevated expression of anti-apoptotic proteins including cellular inhibitor of apoptosis protein-1 (cIAP-1) in CaP cells, which could be attenuated by pre-treatment with a TNF-α neutralizing antibody. Treatment with a novel IAP antagonist, AT-IAP, decreased basal and TNF-α-induced cIAP-1 expression in CaP cells, switched TNF-α signaling from pro-survival to pro-apoptotic and increased radiation sensitivity of CaP cells in co-culture with THP-1 cells. We conclude that targeting cIAP-1 can overcome apoptosis resistance of CaP cells and is an ideal approach to exploit high TNF-α signals within the TAM-rich microenvironment of PTEN-deficient CaP cells to enhance response to radiotherapy.
Resumo:
HOX genes are master regulators of organ morphogenesis and cell differentiation during embryonic development, and continue to be expressed throughout post-natal life. To test the hypothesis that HOX genes are dysregulated in head and neck squamous cell carcinoma (HNSCC) we defined their expression profile, and investigated the function, transcriptional regulation and clinical relevance of a subset of highly expressed HOXD genes. Two HOXD genes, D10 and D11, showed strikingly high levels in HNSCC cell lines, patient tumor samples and publicly available datasets. Knockdown of HOXD10 in HNSCC cells caused decreased proliferation and invasion, whereas knockdown of HOXD11 reduced only invasion. POU2F1 consensus sequences were identified in the 5' DNA of HOXD10 and D11. Knockdown of POU2F1 significantly reduced expression of HOXD10 and D11 and inhibited HNSCC proliferation. Luciferase reporter constructs of the HOXD10 and D11 promoters confirmed that POU2F1 consensus binding sites are required for optimal promoter activity. Utilizing patient tumor samples a significant association was found between immunohistochemical staining of HOXD10 and both the overall and the disease-specific survival, adding further support that HOXD10 is dysregulated in head and neck cancer. Additional studies are now warranted to fully evaluate HOXD10 as a prognostic tool in head and neck cancers.