82 resultados para Hoyt, Jesse.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The influence of an electrically inhomogeneous epitaxial bottom layer on the ferroelectric and electrical properties has been explored in epitaxial PbTiO3 (PTO)/La0.7Sr0.3MnO3 (LSMO) submicron structures using atomic force microscopy. The submicron LSMO-dot structures underneath the ferroelectric PTO film allow exploring gradual changes in material properties. The LSMO interfacial layer influences significantly both electrical and ferroelectric properties of the upper PTO layer. The obtained results show that the as-grown polarization state of an epitaxial ferroelectric layer is strongly influenced by the properties of the layer on top of which it is deposited. (C) 2013 AIP Publishing LLC.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bias-induced oxygen ion dynamics underpins a broad spectrum of electroresistive and memristive phenomena in oxide materials. Although widely studied by device-level and local voltage-current spectroscopies, the relationship between electroresistive phenomena, local electrochemical behaviors, and microstructures remains elusive. Here, the interplay between history-dependent electronic transport and electrochemical phenomena in a NiO single crystalline thin film with a number of well-defined defect types is explored on the nanometer scale using an atomic force microscopy-based technique. A variety of electrochemically-active regions were observed and spatially resolved relationship between the electronic and electrochemical phenomena was revealed. The regions with pronounced electroresistive activity were further correlated with defects identified by scanning transmission electron microscopy. Using fully coupled mechanical-electrochemical modeling, we illustrate that the spatial distribution of strain plays an important role in electrochemical and electroresistive phenomena. These studies illustrate an approach for simultaneous mapping of the electronic and ionic transport on a single defective structure level such as dislocations or interfaces, and pave the way for creating libraries of defect-specific electrochemical responses.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The limits to biological processes on Earth are determined by physicochemical parameters, such as extremes of temperature and low water availability. Research into microbial extremophiles has enhanced our understanding of the biophysical boundaries which define the biosphere. However, there remains a paucity of information on the degree to which rates of microbial multiplication within extreme environments are determined by the availability of specific chemical elements. Here, we show that iron availability and composition of the gaseous phase (aerobic vs. microaerobic) determine susceptibility of a marine bacterium, Halomonas hydrothermalis, to sub-optimal and elevated temperature and salinity by impacting rates of cell division (but not viability). In particular, iron starvation combined with microaerobic conditions (5 % v/v of O2, 10 % v/v of CO2, reduced pH) reduced sensitivity to temperature across the 13 °C range tested. These data demonstrate that nutrient limitation interacts with physicochemical parameters to determine biological permissiveness for extreme environments. The interplay between resource availability and stress tolerance, therefore, may shape the distribution and ecology of microorganisms within Earth's biosphere.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Spatial variability of conductivity in ceria is explored using scanning probe microscopy (SPM) with galvanostatic control. Ionically blocking electrodes are used to probe the conductivity under opposite polarities to reveal possible differences in the defect structure across a thin film of CeO2. Data suggests the existence of a large spatial inhomogeneity that could give rise to constant phase elements during standard electrochemical characterization, potentially affecting the overall conductivity of films on the macroscale. The approach discussed here can also be utilized for other mixed ionic electronic conductor (MIEC) systems including memristors and electroresistors, as well as physical systems such as ferroelectric tunneling barriers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The blocking of ion transport at interfaces strongly limits the performance of electrochemical nanodevices for energy applications. The barrier is believed to arise from space-charge regions generated by mobile ions by analogy to semiconductor junctions. Here we show that something different is at play by studying ion transport in a bicrystal of yttria (9% mol) stabilized zirconia (YSZ), an emblematic oxide ion conductor. Aberration-corrected scanning transmission electron microscopy (STEM) provides structure and composition at atomic resolution, with the sensitivity to directly reveal the oxygen ion profile. We find that Y segregates to the grain boundary at Zr sites, together with a depletion of oxygen that is confined to a small length scale of around 0.5 nm. Contrary to the main thesis of the space-charge model, there exists no evidence of a long-range O vacancy depletion layer. Combining ion transport measurements across a single grain boundary by nanoscale electrochemical strain microscopy (ESM), broadband dielectric spectroscopy measurements, and density functional calculations, we show that grain-boundary-induced electronic states act as acceptors, resulting in a negatively charged core. Ultimately, it is this negative charge which gives rise to the barrier for ion transport at the grain boundary

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Strain effects have a significant role in mediating classic ferroelectric behavior such as polarization switching and domain wall dynamics. These effects are of critical relevance if the ferroelectric order parameter is coupled to strain and is therefore, also ferroelastic. Here, switching spectroscopy piezoresponse force microscopy (SS-PFM) is combined with control of applied tip pressure to exert direct control over the ferroelastic and ferroelectric switching events, a modality otherwise unattainable in traditional PFM. As a proof of concept, stress-mediated SS-PFM is applied toward the study of polarization switching events in a lead zirconate titanate thin film, with a composition near the morphotropic phase boundary with co-existing rhombohedral and tetragonal phases. Under increasing applied pressure, shape modification of local hysteresis loops is observed, consistent with a reduction in the ferroelastic domain variants under increased pressure. These experimental results are further validated by phase field simulations. The technique can be expanded to explore more complex electromechanical responses under applied local pressure, such as probing ferroelectric and ferroelastic piezoelectric nonlinearity as a function of applied pressure, and electro-chemo-mechanical response through electrochemical strain microscopy.