127 resultados para Hot machining


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two complementary explanations have been offered by social psychologists to account for the universal hold of national identity, first that national identity is ideologically assumed, as it forms the ‘banal’ background of everyday life, and second that national identity is ‘hotly’ constructed and contested in political and everyday settings to great effect. However, ‘banal’ and ‘hot’ aspects of national identity have been found to be distributed unevenly across national and subnational groups and banality itself can be strategically used to distinguish between different groups. The present paper develops these ideas by examining possible reasons for these different modes and strategies of identity expression. Drawing upon intergroup theories of minority and majority relations, we examine how a group who see themselves unequivocally as a minority, Irish Travellers, talk about their national identity in comparison to an age and gender-matched sample of Irish students. We find that Travellers proactively display and claim ‘hot’ national identity in order to establish their Irishness. Irish students ‘do banality’, police the boundaries and reputation of Irishness, and actively reject and disparage proactive displays of Irishness. The implications for discursive understandings of identity, the study of intra-national group relations and policies of minority inclusion are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A parallel kinematic machine (PKM) topology can only give its best performance when its geometrical parameters are optimized. In this paper, dimensional synthesis of a newly developed PKM is presented for the first time. An optimization method is developed with the objective to maximize both workspace volume and global dexterity of the PKM. Results show that the method can effectively identify design parameter changes under different weighted objectives. The PKM with optimized dimensions has a large workspace to footprint ratio and a large well-conditioned workspace, hence justifies its suitability for large volume machining.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of photon frequency redistribution by line branching on mass-loss rates for hot luminous stars is investigated. Monte Carlo simulations are carried out for a range of OB star models which show that previous mass-loss calculations which neglect non-resonance line scattering overestimate mass-loss rates for luminous O stars by ~20 per cent. For luminous B stars the effect is somewhat larger, typically ~50 per cent. A Wolf-Rayet star model is used to investigate line branching in the strong wind limit. In this case the effect of line branching is much greater, giving mass-loss rates that are smaller by a factor ~3 from computations which neglect branching.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hard turning (HT) is a material removal process employing a combination of a single point cutting tool and high speeds to machine hard ferrous alloys which exhibit hardness values over 45 HRC. In this paper, a surface defect machining (SDM) method for HT is proposed which harnesses the combined advantages of porosity machining and pulsed laser pre-treatment processing. From previous experimental work, this was shown to provide better controllability of the process and improved quality of the machined surface. While the experiments showed promising results, a comprehensive understanding of this new technique could only be achieved through a rigorous, in depth theoretical analysis. Therefore, an assessment of the SDM technique was carried out using both finite element method (FEM) and molecular dynamics (MD) simulations.
FEM modelling was used to compare the conventional HT of AISI 4340 steel (52 HRC) using an Al2O3 insert with the proposed SDM method. The simulations showed very good agreement with the previously published experimental results. Compared to conventional HT, SDM provided favourable machining outcomes, such as reduced shear plane angle, reduced average cutting forces, improved surface roughness, lower residual stresses on the machined surface, reduced tool–chip interface contact length and increased chip flow velocity. Furthermore, a scientific explanation of the improved surface finish was revealed using a state-of-the-art MD simulation model which suggested that during SDM, a combination of both the cutting action and rough polishing action help improve the machined surface finish.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Colon-residing bacteria, such as vancomycin-resistant Enterococcus faecalis and Bacteroides fragilis, can cause a range of serious clinical infections. Photodynamic antimicrobial chemotherapy (PACT) may be a novel treatment option for these multidrug resistant organisms. The aim of this study was to formulate a Eudragit®-based drug delivery system, via hot melt extrusion (HME), for targeting colonic release of photosensitizer. The susceptibility of E. faecalis and B. fragilis to PACT mediated by methylene blue (MB), meso-tetra(N-methyl-4-pyridyl)porphine tetra-tosylate (TMP), or 5-aminolevulinic acid hexyl-ester (h-ALA) was determined, with tetrachlorodecaoxide (TCDO), an oxygen-releasing compound, added in some studies. Results show that, for MB, an average of 30% of the total drug load was released over a 6-h period. For TMP and h-ALA, these values were 50% and 16% respectively. No drug was released in the acidic media. Levels of E. faecalis and B. fragilis were reduced by up to 4.67 and 7.73 logs, respectively, on PACT exposure under anaerobic conditions, with increased kill associated with TCDO. With these formulations, photosensitizer release could potentially be targeted to the colon, and colon-residing pathogens killed by PACT. TCDO could be used in vivo to generate oxygen, which could significantly impact on the success of PACT in the clinic.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the discovery of two transiting hot Jupiters, WASP-65b (Mpl = 1.55 ± 0.16 MJ; Rpl = 1.11 ± 0.06 RJ), and WASP-75b (Mpl = 1.07 ± 0.05 MJ; Rpl = 1.27 ± 0.05 RJ). They orbit their host star every ∼2.311, and ∼2.484 days, respectively. The planet host WASP-65 is a G6 star (Teff = 5600 K, [Fe/H] = −0.07 ± 0.07, age 8 Gyr); WASP-75 is an F9 star (Teff = 6100 K, [Fe/H] = 0.07 ± 0.09, age ∼ 3 Gyr). WASP-65b is one of the densest known exoplanets in the mass range 0.1 and 2.0 MJ (ρpl = 1.13 ± 0.08 ρJ), a mass range where a large fraction of planets are found to be inflated with respect to theoretical planet models. WASP-65b is one of only a handful of planets with masses of ∼1.5 MJ, a mass regime surprisingly underrepresented among the currently known hot Jupiters. The radius of WASP-75b is slightly inflated (10%) as compared to theoretical planet models with no core, and has a density similar to that of Saturn (ρpl = 0.52 ± 0.06 ρJ). Key words. planetary systems – stars: individual:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Glenn Research Centre of NASA, USA (www.grc.nasa.gov/WWW/SiC/, silicon carbide electronics) is in pursuit of realizing bulk manufacturing of silicon carbide (SiC), specifically by mechanical means. Single point diamond turning (SPDT) technology which employs diamond (the hardest naturally-occurring material realized to date) as a cutting tool to cut a workpiece is a highly productive manufacturing process. However, machining SiC using SPDT is a complex process and, while several experimental and analytical studies presented to date aid in the understanding of several critical processes of machining SiC, the current knowledge on the ductile behaviour of SiC is still sparse. This is due to a number of simultaneously occurring physical phenomena that may take place on multiple length and time scales. For example, nucleation of dislocation can take place at small inclusions that are of a few atoms in size and once nucleated, the interaction of these nucleations can manifest stresses on the micrometre length scales. The understanding of how stresses manifest during fracture in the brittle range, or dislocations/phase transformations in the ductile range, is crucial in understanding the brittle–ductile transition in SiC. Furthermore, there is a need to incorporate an appropriate simulation-based approach in the manufacturing research on SiC, owing primarily to the number of uncertainties in the experimental research that includes wear of the cutting tool, poor controllability of the nano-regime machining scale (effective thickness of cut), and coolant effects (interfacial phenomena between the tool, workpiece/chip and coolant), etc. In this review, these two problems are combined together to posit an improved understanding on the current theoretical knowledge on the SPDT of SiC obtained from molecular dynamics simulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Molecular dynamics (MD) simulation has enhanced our understanding about ductile-regime machining of brittle materials such as silicon and germanium. In particular, MD simulation has helped understand the occurrence of brittle–ductile transition due to the high-pressure phase transformation (HPPT), which induces Herzfeld–Mott transition. In this paper, relevant MD simulation studies in conjunction with experimental studies are reviewed with a focus on (i) the importance of machining variables: undeformed chip thickness, feed rate, depth of cut, geometry of the cutting tool in influencing the state of the deviatoric stresses to cause HPPT in silicon, (ii) the influence of material properties: role of fracture toughness and hardness, crystal structure and anisotropy of the material, and (iii) phenomenological understanding of the wear of diamond cutting tools, which are all non-trivial for cost-effective manufacturing of silicon. The ongoing developmental work on potential energy functions is reviewed to identify opportunities for overcoming the current limitations of MD simulations. Potential research areas relating to how MD simulation might help improve existing manufacturing technologies are identified which may be of particular interest to early stage researchers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Context. The VLT-FLAMES Tarantula Survey has an extensive view of the copious number of massive stars in the 30 Doradus (30 Dor) star forming region of the Large Magellanic Cloud. These stars play a crucial role in our understanding of the stellar feedback in more distant, unresolved star forming regions. Aims. The first comprehensive census of hot luminous stars in 30 Dor is compiled within a 10 arcmin (150 pc) radius of its central cluster, R136. We investigate the stellar content and spectroscopic completeness of the early type stars. Estimates were made for both the integrated ionising luminosity and stellar wind luminosity. These values were used to re-assess the star formation rate (SFR) of the region and determine the ionising photon escape fraction. Methods. Stars were selected photometrically and combined with the latest spectral classifications. Spectral types were estimated for stars lacking spectroscopy and corrections were made for binary systems, where possible. Stellar calibrations were applied to obtain their physical parameters and wind properties. Their integrated properties were then compared to global observations from ultraviolet (UV) to far-infrared (FIR) imaging as well as the population synthesis code, Starburst99. Results. Our census identified 1145 candidate hot luminous stars within 150 pc of R136 of which >700 were considered to be genuine early type stars and contribute to feedback. We assess the survey to be spectroscopically complete to 85% in the outer regions (>5 pc) but only 35% complete in the region of the R136 cluster, giving a total of 500 hot luminous stars in the census which had spectroscopy. Only 31 were found to be Wolf-Rayet (W-R) or Of/WN stars, but their contribution to the integrated ionising luminosity and wind luminosity was ~ 40% and ~ 50%, respectively. Similarly, stars with M > 100 M (mostly H-rich WN stars) also showed high contributions to the global feedback, ~ 25% in both cases. Such massive stars are not accounted for by the current Starburst99 code, which was found to underestimate the integrated ionising luminosity of R136 by a factor ~ 2 and the wind luminosity by a factor ~ 9. The census inferred a SFR for 30 Dor of 0.073 ± 0.04 M yr . This was generally higher than that obtained from some popular SFR calibrations but still showed good consistency with the far-UV luminosity tracer as well as the combined Hα and mid-infrared tracer, but only after correcting for Hα extinction. The global ionising output was also found to exceed that measured from the associated gas and dust, suggesting that ~6 % of the ionising photons escape the region. Conclusions. When studying the most luminous star forming regions, it is essential to include their most massive stars if one is to determine a reliable energy budget. Photon leakage becomes more likely after including their large contributions to the ionising output. If 30 Dor is typical of other massive star forming regions, estimates of the SFR will be underpredicted if this escape fraction is not accounted for.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this research we investigate the performance of drilling process in carbon fibre reinforced composite (CFC) material, titanium alloy and the hybrid stack of these two materials, using coated carbide drill bit. We study the effect of the process parameters such as the feed rate and speed on the induced forces and torques, also on the wear of drill and surface roughness of the holes. In the composite material the percentage of surface damage in both drilling CFC on its own and drilling in stack form is estimated. Also, the effect of worn drill on the surface damage is identified. In the titanium, the burr formation in stack and non-stack form is investigated. The wear of the drill results in increased forces and torques required for drilling. This increases the surface delaminations substantially at the entrance in drilling of CFC. However, the surface roughness of the holes reduces with the wear of the drill in CFC drilling. Also, the surface delamination and surface roughness of the holes in the CFC whilst drilled in hybrid form reduces significantly. This is despite the increase of the forces and torques required in drilling CFC in stack form. Copyright © 2012 Inderscience Enterprises Ltd.