115 resultados para Hot Tearing


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Colon-residing bacteria, such as vancomycin-resistant Enterococcus faecalis and Bacteroides fragilis, can cause a range of serious clinical infections. Photodynamic antimicrobial chemotherapy (PACT) may be a novel treatment option for these multidrug resistant organisms. The aim of this study was to formulate a Eudragit®-based drug delivery system, via hot melt extrusion (HME), for targeting colonic release of photosensitizer. The susceptibility of E. faecalis and B. fragilis to PACT mediated by methylene blue (MB), meso-tetra(N-methyl-4-pyridyl)porphine tetra-tosylate (TMP), or 5-aminolevulinic acid hexyl-ester (h-ALA) was determined, with tetrachlorodecaoxide (TCDO), an oxygen-releasing compound, added in some studies. Results show that, for MB, an average of 30% of the total drug load was released over a 6-h period. For TMP and h-ALA, these values were 50% and 16% respectively. No drug was released in the acidic media. Levels of E. faecalis and B. fragilis were reduced by up to 4.67 and 7.73 logs, respectively, on PACT exposure under anaerobic conditions, with increased kill associated with TCDO. With these formulations, photosensitizer release could potentially be targeted to the colon, and colon-residing pathogens killed by PACT. TCDO could be used in vivo to generate oxygen, which could significantly impact on the success of PACT in the clinic.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the discovery of two transiting hot Jupiters, WASP-65b (Mpl = 1.55 ± 0.16 MJ; Rpl = 1.11 ± 0.06 RJ), and WASP-75b (Mpl = 1.07 ± 0.05 MJ; Rpl = 1.27 ± 0.05 RJ). They orbit their host star every ∼2.311, and ∼2.484 days, respectively. The planet host WASP-65 is a G6 star (Teff = 5600 K, [Fe/H] = −0.07 ± 0.07, age 8 Gyr); WASP-75 is an F9 star (Teff = 6100 K, [Fe/H] = 0.07 ± 0.09, age ∼ 3 Gyr). WASP-65b is one of the densest known exoplanets in the mass range 0.1 and 2.0 MJ (ρpl = 1.13 ± 0.08 ρJ), a mass range where a large fraction of planets are found to be inflated with respect to theoretical planet models. WASP-65b is one of only a handful of planets with masses of ∼1.5 MJ, a mass regime surprisingly underrepresented among the currently known hot Jupiters. The radius of WASP-75b is slightly inflated (10%) as compared to theoretical planet models with no core, and has a density similar to that of Saturn (ρpl = 0.52 ± 0.06 ρJ). Key words. planetary systems – stars: individual:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, a newly proposed machining method named “surface defect machining” (SDM) [Wear, 302, 2013 (1124-1135)] was explored for machining of nanocrystalline beta silicon carbide (3C-SiC) at 300K using MD simulation. The results were compared with isothermal high temperature machining at 1200K under the same machining parameters, emulating ductile mode micro laser assisted machining (µ-LAM) and with conventional cutting at 300 K. In the MD simulation, surface defects were generated on the top of the (010) surface of the 3C-SiC work piece prior to cutting, and the workpiece was then cut along the <100> direction using a single point diamond tool at a cutting speed of 10 m/sec. Cutting forces, sub-surface deformation layer depth, temperature in the shear zone, shear plane angle and friction coefficient were used to characterize the response of the workpiece. Simulation results showed that SDM provides a unique advantage of decreased shear plane angle which eases the shearing action. This in turn causes an increased value of average coefficient of friction in contrast to the isothermal cutting (carried at 1200 K) and normal cutting (carried at 300K). The increase of friction coefficient however was found to aid the cutting action of the tool due to an intermittent dropping in the cutting forces, lowering stresses on the cutting tool and reducing operational temperature. Analysis shows that the introduction of surface defects prior to conventional machining can be a viable choice for machining a wide range of ceramics, hard steels and composites compared to hot machining.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Context. The VLT-FLAMES Tarantula Survey has an extensive view of the copious number of massive stars in the 30 Doradus (30 Dor) star forming region of the Large Magellanic Cloud. These stars play a crucial role in our understanding of the stellar feedback in more distant, unresolved star forming regions. Aims. The first comprehensive census of hot luminous stars in 30 Dor is compiled within a 10 arcmin (150 pc) radius of its central cluster, R136. We investigate the stellar content and spectroscopic completeness of the early type stars. Estimates were made for both the integrated ionising luminosity and stellar wind luminosity. These values were used to re-assess the star formation rate (SFR) of the region and determine the ionising photon escape fraction. Methods. Stars were selected photometrically and combined with the latest spectral classifications. Spectral types were estimated for stars lacking spectroscopy and corrections were made for binary systems, where possible. Stellar calibrations were applied to obtain their physical parameters and wind properties. Their integrated properties were then compared to global observations from ultraviolet (UV) to far-infrared (FIR) imaging as well as the population synthesis code, Starburst99. Results. Our census identified 1145 candidate hot luminous stars within 150 pc of R136 of which >700 were considered to be genuine early type stars and contribute to feedback. We assess the survey to be spectroscopically complete to 85% in the outer regions (>5 pc) but only 35% complete in the region of the R136 cluster, giving a total of 500 hot luminous stars in the census which had spectroscopy. Only 31 were found to be Wolf-Rayet (W-R) or Of/WN stars, but their contribution to the integrated ionising luminosity and wind luminosity was ~ 40% and ~ 50%, respectively. Similarly, stars with M > 100 M (mostly H-rich WN stars) also showed high contributions to the global feedback, ~ 25% in both cases. Such massive stars are not accounted for by the current Starburst99 code, which was found to underestimate the integrated ionising luminosity of R136 by a factor ~ 2 and the wind luminosity by a factor ~ 9. The census inferred a SFR for 30 Dor of 0.073 ± 0.04 M yr . This was generally higher than that obtained from some popular SFR calibrations but still showed good consistency with the far-UV luminosity tracer as well as the combined Hα and mid-infrared tracer, but only after correcting for Hα extinction. The global ionising output was also found to exceed that measured from the associated gas and dust, suggesting that ~6 % of the ionising photons escape the region. Conclusions. When studying the most luminous star forming regions, it is essential to include their most massive stars if one is to determine a reliable energy budget. Photon leakage becomes more likely after including their large contributions to the ionising output. If 30 Dor is typical of other massive star forming regions, estimates of the SFR will be underpredicted if this escape fraction is not accounted for.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present the results of a line identification analysis using data from the IRAM Plateau de Bure Inferferometer, focusing on six massive star-forming hot cores: G31.41+0.31, G29.96-0.02, G19.61-0.23, G10.62-0.38, G24.78+0.08A1 and G24.78+0.08A2. We identify several transitions of vibrationally excited methyl formate (HCOOCH$_3$) for the first time in these objects as well as transitions of other complex molecules, including ethyl cyanide (C$_2$H$_5$CN), and isocyanic acid (HNCO). We also postulate a detection of one transition of glycolaldehyde (CH$_2$(OH)CHO) in two new hot cores. We find G29.96-0.02, G19.61-0.23, G24.78+0.08A1 and 24.78+0.08A2 to be chemically very similar. G31.41+0.31, however, is chemically different: it manifests a larger chemical inventory and has significantly larger column densities. We suggest that it may represent a different evolutionary stage to the other hot cores in the sample, or it may surround a star with a higher mass. We derive column densities for methyl formate in G31.41+0.31, using the rotation diagram method, of $\times$10$^{17}$ cm$^{-2}$ and a T$_{rot}$ of $\sim$170 K. For G29.96-0.02, G24.78+0.08A1 and G24.78+0.08A2, glycolaldehyde, methyl formate and methyl cyanide all seem to trace the same material and peak at roughly the same position towards the dust emission peak. For G31.41+0.31, however, glycolaldehyde shows a different distribution to methyl formate and methyl cyanide and seems to trace the densest, most compact inner part of hot cores.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present new detections of cyanodiacetylene (HC5N) toward hot molecular cores, observed with the Tidbinbilla 34 m radio telescope (DSS–34). In a sample of 79 hot molecular cores, HC5N was detected towards 35. These results are counter to the expectation that long chain cyanopolyynes, such as HC5N, are not typically found in hot molecular cores, unlike their shorter chain counterpart HC3N. However it is consistent with recent models which suggest HC5N may exist for a limited period during the evolution of hot molecular cores.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The close proximity of short-period hot-Jupiters to their parent star means they are subject to extreme tidal forces. This has a profound effect on their structure and, as a result, density measurements that assume that the planet is spherical can be incorrect. We have simulated the tidally distorted surface for 34 known short-period hot-Jupiters, assuming surfaces of constant gravitational equipotential for the planet, and the resulting densities have been calculated based only on observed parameters of the exoplanet systems. Comparing these results to the density values, assuming the planets are spherical, shows that there is an appreciable change in the measured density for planets with very short periods (typically less than two days). For one of the shortest-period systems, WASP-19b, we determine a decrease in bulk density of 12% from the spherical case and, for the majority of systems in this study, this value is in the range of 1%-5%. On the other hand, we also find cases where the distortion is negligible (relative to the measurement errors on the planetary parameters) even in the cases of some very short period systems, depending on the mass ratio and planetary radius. For high-density gas planets requiring apparently anomalously large core masses, density corrections due to tidal deformation could become important for the shortest-period systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Kepler-10b was the first rocky planet detected by the Kepler satellite and confirmed with radial velocity follow-up observations from Keck-HIRES. The mass of the planet was measured with a precision of around 30%, which was
insufficient to constrain models of its internal structure and composition in detail. In addition to Kepler-10b, a second planet transiting the same star with a period of 45 days was statistically validated, but the radial velocities were only
good enough to set an upper limit of 20 M⊕ for the mass of Kepler-10c. To improve the precision on the mass for planet b, the HARPS-N Collaboration decided to observe Kepler-10 intensively with the HARPS-N spectrograph
on the Telescopio Nazionale Galileo on La Palma. In total, 148 high-quality radial-velocity measurements were obtained over two observing seasons. These new data allow us to improve the precision of the mass determination for Kepler-10b to 15%. With a mass of 3.33 ± 0.49 M⊕ and an updated radius of 1.47+0.03 −0.02 R⊕, Kepler-10b has a density of 5.8 ± 0.8 g cm−3, very close to the value predicted by models with the same internal structure and composition as the Earth. We were also able to determine a mass for the 45-day period planet Kepler-10c, with an even better precision of 11%. With a mass of 17.2 ± 1.9 M⊕ and radius of 2.35+0.09 −0.04 R⊕, Kepler-10c has a density of 7.1 ± 1.0 g cm−3. Kepler-10c appears to be the first strong evidence of a class of more massive solid planets with longer orbital periods

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We characterize the planetary system Kepler-101 by performing a combined differential evolution Markov chain Monte Carlo analysisof Kepler data and forty radial velocities obtained with the HARPS-N spectrograph. This system was previously validated and iscomposed of a hot super-Neptune, Kepler-101b, and an Earth-sized planet, Kepler-101c. These two planets orbit the slightly evolvedand metal-rich G-type star in 3.49 and 6.03 days, respectively. With mass Mp = 51.1+5.1−4.7 M⊕, radius Rp = 5.77+0.85−0.79 R⊕, and density ρp = 1.45+0.83 −0.48 g cm−3, Kepler-101b is the first fully characterized super-Neptune, and its density suggests that heavy elements makeup a significant fraction of its interior; more than 60% of its total mass. Kepler-101c has a radius of 1.25+0.19−0.17 R⊕, which implies theabsence of any H/He envelope, but its mass could not be determined because of the relative faintness of the parent star for highly precise radial-velocity measurements (Kp = 13.8) and the limited number of radial velocities. The 1σ upper limit, Mp < 3.8 M⊕, excludes a pure iron composition with a probability of 68.3%. The architecture of the planetary system Kepler-101 − containing aclose-in giant planet and an outer Earth-sized planet with a period ratio slightly larger than the 3:2 resonance − is certainly of interest for scenarios of planet formation and evolution. This system does not follow the previously reported trend that the larger planet has the longer period in the majority of Kepler systems of planet pairs with at least one Neptune-sized or larger planet.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The overall aim of the project was to study the influence of process variables on the distribution of a model active pharmaceutical ingredient (API) during fluidised melt granulation of pharmaceutical granules with a view of optimising product characteristics. Granules were produced using common pharmaceutical excipients; lactose monohydrate using poly ethylene glycol (PEG1500) as a meltable binder. Methylene blue was used as a model API. Empirical models relating the process variables to the granules properties such as granule mean size, product homogeneity and granule strength were developed using the design of experiment approach. Fluidising air velocity and fluidising air temperature were shown to strongly influence the product properties. Optimisation studies showed that strong granules with homogeneous distribution of the active ingredient can be produced at high fluidising air velocity and at high fluidising air temperatures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Constitutive equations including an Arrhenius term have been applied to analyze the hot deformation behavior of a nitride-strengthened (NS) martensitic heat resistant steel in temperature range of 900–1200 °C and strain rate range of 0.001–10 /s. On the basis of analysis of the deformation data, the stress–strain curves up to the peak were divided into four regions, in sequence, representing four processes, namely hardening, dynamic recovery (DRV), dynamic strain induced transformation (DSIT), and dynamic recrystallization (DRX), according to the inflection points in ∂θ/∂σ∂θ/∂σ and ∂(∂θ/∂σ)/∂σ∂(∂θ/∂σ)/∂σ curves. Some of the inflection points have their own meanings. For examples, the minimum of ∂θ/∂σ∂θ/∂σ locates the start of DRV and the maximum of it indicates the start of DRX. The results also showed that the critical strain of DRX was sensitive to ln(Z) below 40, while the critical stress of DRX was sensitive to it above 40. The final microstructures under different deformation conditions were analyzed in terms of softening processes including DRV, DRX, metadynamic crystallization (MDRX) and DSIT.