215 resultados para Helium Hamiltonian


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have used optical Rayleigh and Thomson scattering to investigate the expansion dynamics of laser induced plasma in atmospheric helium and to map its electron parameters both in time and space. The plasma is created using 9 ns duration, 140 mJ pulses from a Nd:YAG laser operating at 1064 nm, focused with a 10 cm focal length lens, and probed with 7 ns, 80 mJ, and 532 nm Nd:YAG laser pulses. Between 0.4 μs and 22.5 μs after breakdown, the electron density decreases from 3.3 × 1017 cm−3 to 9 × 1013 cm−3, while the temperature drops from 3.2 eV to 0.1 eV. Spatially resolved Thomson scattering data recorded up to 17.5 μs reveal that during this time the laser induced plasma expands at a rate given by R ∼ t0.4 consistent with a non-radiative spherical blast wave. This data also indicate the development of a toroidal structure in the lateral profile of both electron temperature and density. Rayleigh scattering data show that the gas density decreases in the center of the expanding plasma with a central scattering peak reemerging after about 12 μs. We have utilized a zero dimensional kinetic global model to identify the dominant particle species versus delay time and this indicates that metastable helium and the He2 + molecular ion play an important role.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present observational data for a peculiar supernova discovered by the OGLE-IV survey and followed by the Public ESO Spectroscopic Survey for Transient Objects. The inferred redshift of z = 0.07 implies an absolute magnitude in the rest-frame I-band of M-1 similar to -17.6 mag. This places it in the luminosity range between normal Type Ia SNe and novae. Optical and near infrared spectroscopy reveal mostly Ti and Ca lines, and an unusually red color arising from strong depression of flux at rest wavelengths

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The flare of radiation from the tidal disruption and accretion of a star can be used as a marker for supermassive black holes that otherwise lie dormant and undetected in the centres of distant galaxies. Previous candidate flares have had declining light curves in good agreement with expectations, but with poor constraints on the time of disruption and the type of star disrupted, because the rising emission was not observed. Recently, two `relativistic' candidate tidal disruption events were discovered, each of whose extreme X-ray luminosity and synchrotron radio emission were interpreted as the onset of emission from a relativistic jet. Here we report a luminous ultraviolet-optical flare from the nuclear region of an inactive galaxy at a redshift of 0.1696. The observed continuum is cooler than expected for a simple accreting debris disk, but the well-sampled rise and decay of the light curve follow the predicted mass accretion rate and can be modelled to determine the time of disruption to an accuracy of two days. The black hole has a mass of about two million solar masses, modulo a factor dependent on the mass and radius of the star disrupted. On the basis of the spectroscopic signature of ionized helium from the unbound debris, we determine that the disrupted star was a helium-rich stellar core.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electron-impact excitation data for He-like ions are of significant importance for diagnostic applications to both laboratory and astrophysical plasmas. Here we report on the first fully relativistic R -matrix calculations with radiation damping for the He-like ions Fe 24+ and Kr 34+ . Effective collision strengths for these two ions have been determined with and without damping over a wide temperature range for all transitions between the 49 levels through n = 5. We find that damping has a pronounced effect on the effective collision strengths for excitation to some of the low-lying levels, but its effect on excitation to the vast majority of levels is small. At the energy of a resonance peak, we also investigate the effect of radiation damping on the angular distribution of scattered electrons. Finally, we compare our results for Fe 24+ with an earlier intermediate coupling frame transformation R -matrix calculation with radiation damping by Whiteford et al ( J. Phys. B: At. Mol. Opt. Phys. 34 3179) and find good agreement, especially for excitation to the lower levels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the potential use of line ratio diagnostics to evaluate electron temperature in either helium or helium seeded argon plasmas. Plasmas are produced in a helicon plasma source. A rf compensated Langmuir probe is used to measure both the electron temperature and plasma density while a spectrometer is used to measure He I line intensities from the plasma. For all plasma densities where the electron temperature remains at 5 ± 1 eV, three He line ratios are measured. Each experimental ratio is compared with the prediction of three different collisional radiative models. One of these models makes uses of recent R-matrix with pseudo-states calculations for collisional rate coefficients. A discussion related to the different observations and model predictions is presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Spectroscopic studies of line emission intensities and ratios offer an attractive option in the\r\ndevelopment of non-invasive plasma diagnostics. Evaluating ratios of selected He I line\r\nemission profiles from the singlet and triplet neutral helium spin systems allows for simultaneous\r\nmeasurement of electron density (ne) and temperature (Te) profiles. Typically, this powerful\r\ndiagnostic tool is limited by the relatively long relaxation times of the 3S metastable term of helium\r\nthat populates the triplet spin system, and on which electron temperature sensitive lines are based.\r\nBy developing a time dependent analytical solution, we model the time evolution of the two spin\r\nsystems. We present a hybrid time dependent/independent line ratio solution that improves the\r\nrange of application of this diagnostic technique in the scrape-off layer (SOL) and edge plasma\r\nregions when comparing it against the current equilibrium line ratio helium model used at\r\nTEXTOR.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electron-impact excitation collision strengths for transitions between all singly excited levels up to the n = 4 shell of helium-Eke argon and the n = 4 and 5 shells of helium-like iron have been calculated using a radiation-damped R-matrix approach. The theoretical collision strengths have been examined and associated with their infinite-energy limit values to allow the preparation of Maxwell-averaged effective collision strengths. These are conservatively considered to be accurate to within 20% at all temperatures, 3 x 10(5)-3 x 10(8) K forAr(16+) and 10(6)-10(9) K for Fe24+. They have been compared with the results of previous studies, where possible, and we find a broad accord. The corresponding rate coefficients are required for use in the calculation of derived, collisional-radiative, effective emission coefficients for helium-like lines for diagnostic application to fusion and astrophysical plasmas. The uncertainties in the fundamental collision data have been used to provide a critical assessment of the expected resultant uncertainties in such derived data, including redistributive and cascade collisional-radiative effects. The consequential uncertainties in the parts of the effective emission coefficients driven by excitation from the ground levels for the key w, x, y and z lines vary between 5% and 10%. Our results remove an uncertainty in the reaction rates of a key class of atomic processes governing the spectral emission of helium-like ions in plasmas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The line intensity ratio method provides a nonintrusive diagnostic for the measurement of electron temperature in microwave-generated plasmas. For optically thin plasmas of low density, a line intensity method using He I lines can often be used, and is based on the fact that the electron impact excitation rate coefficients for helium singlet and triplet states are insensitive to electron density but differ as a function of the electron temperature. Line intensity measurements are presented from microwave-generated helium plasmas. Both steady-state corona and collision-radiative theoretical models are used to evaluate the ground and excited state populations. The line ratio versus electron temperature obtained from both of these methods are compared with the results from measurements. However, it is not possible to diagnose the electron temperature from the line ratios alone due to the presence of significant opacity and nonnegligible 1s2s S-3 metastable fraction in the plasma. (C) 2004 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The direct detection of a stellar system that explodes as a Type Ia supernova (SN Ia) has not yet been successful. Various indirect methods have been used to investigate SN Ia progenitor systems but none have produced conclusive results. A prediction of single-degenerate models is that H- (or He-) rich material from the envelope of the companion star should be swept up by the SN ejecta in the explosion. Seven SNe Ia have been analysed to date looking for signs of H-rich material in their late-time spectra and none were detected. We present results from new late-time spectra of 11 SNe Ia obtained at the Very Large Telescope using XShooter and FORS2. We present the tentative detection of Hα emission for SN 2013ct, corresponding to ∼0.007 M of stripped/ablated companion star material (under the assumptions of the spectral modelling). This mass is significantly lower than expected for single-degenerate scenarios, suggesting that >0.1 M of H-rich is present but not observed. We do not detect Hα emission in the other 10 SNe Ia. This brings the total sample of normal SNe Ia with non-detections (<0.001–0.058 M) of H-rich material to 17 events. The simplest explanation for these non-detections is that these objects did not result from the explosion of a CO white dwarf accreting matter from a H-rich companion star via Roche lobe overflow or symbiotic channels. However, further spectral modelling is needed to confirm this. We also find no evidence of He-emission features, but models with He-rich companion stars are not available to place mass limits.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work, the non-Markovian decoherence is considered in two ways. Firstly, an effective Hamiltonian approach is demonstrated to investigate the decoherence of a quantum system in a non-Markovian environment, in which complete positivity of the reduced dynamics is achieved. This method uses the notion of an effective environment, that is a subsystem of the environment that causes the decoherence. Secondly, the evolution of the system and environment is decomposed, thus partially illuminating how they would interact given that memory effects are allowed. It should be noted that beam splitters and rotators are sufficient to explain this decomposition.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We propose an effective Hamiltonian approach to investigate decoherence of a quantum system in a non-Markovian reservoir, naturally imposing the complete positivity on the reduced dynamics of the system. The formalism is based on the notion of an effective reservoir, i.e., certain collective degrees of freedom in the reservoir that are responsible for the decoherence. As examples for completely positive decoherence, we present three typical decoherence processes for a qubit such as dephasing, depolarizing, and amplitude damping. The effects of the non-Markovian decoherence are compared to the Markovian decoherence.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Local thermodynamic equilibrium (LTE) absolute and differential abundances are presented for a peculiar metal-rich B-type star, HD 135485. These suggest that HD 135485 has a general enrichment of similar to0.5 dex in all the metals observed (C, N, O, Ne, Mg, Al, Si, P, S, Cl, Ar, Sc, Ti, Cr, Mn, Fe and Sr), except for nickel. The helium enhancement and hence hydrogen deficiency can account for less than or equal to 0.2 dex of this enhancement of metals, with the additional enhancement probably being representative of the progenitor gas. However, some of the metals appear to have greater enhancements, which may have occurred during the star's evolution. The significantly larger nitrogen abundance coupled with a modest helium enhancement observed in HD 135485 indicates that carbon- nitrogen (CN) processed material has possibly contaminated the stellar surface. Neon and carbon enhancements may indicate that helium core flashes have also occurred in HD 135485. Some of the iron-group elements (viz. Mn and Ni) appear to have similar abundance patterns to that of silicon Ap stars, but it is uncertain how these abundance patterns formed if they were not present in the progenitor gas. From a kinematical investigation it is unclear whether this star formed in a metal-rich region as implied by its chemical composition. From its position in the Hertzsprung-Russell diagram, HD 135485 would appear to be an evolved star lying close to or on the horizontal branch.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The transfer ionization process offers a unique opportunity to study radial and angular electron correlations in the helium atom. We report calculations for the multiple differential cross sections of the transfer ionization process p + He --> H + He++ + e(-). The results of these calculations demonstrate the strong sensitivity of the fully differential cross sections to fine details of electron correlation in the target atom. Specifically, angular electron correlation in the ground state of helium results in a broad peak in the electron emission spectra in the backward direction, relative to the incoming beam. Our model explains some of the key effects observed in measurements of multiple differential cross sections using the COLTRIMS technique.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A joint experimental and theoretical study of the transfer ionization process p+He&RARR; H-0+He2++e(-) is presented for 630-keV proton impact energy, where the electron is detected in a plane perpendicular to the proton beam direction. With this choice of kinematics we find the triple-differential cross section to be particularly sensitive to angular correlation in the helium target. There is a good agreement between the experimental data and theoretical calculations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Most of the experimental and theoretical studies of electron-impact ionization of atoms, referred to as (e, 2e), have concentrated on the scattering plane. The assumption has been that all the important physical effects will be observable in the scattering plane. However, very recently it has been shown that, for C6+-helium ionization, experiment and theory are in nice agreement in the scattering plane and in very bad agreement out of the scattering plane. This lack of agreement between experiment and theory has been explained in terms of higher-order scattering effects between the projectile and target ion. We have examined electron-impact ionization of magnesium and have observed similar higher-order effects. The results of the electron-impact ionization of magnesium indicate the possible deficiencies in the calculation of fully differential cross sections in previous heavy particle ionization work.