301 resultados para Harrison, Frederic,
Resumo:
Argulus foliaceus is a damaging fish ectoparasite for which new control measures are being developed based on egg-removal, In an attempt to develop further understanding of seasonal and vertical egg-laying patterns in this parasite, egg-laying activity was monitored over the period 14 April to 17 November 2003 in 2 rainbow trout Oncorhynchus mykiss fisheries in Northern Ireland, UK. At Site 1, egg-laying was continuous from 21 April to 17 November, when water temperature was above 8 to 10 degrees C. At Site 2, egg-laying was continuous from 4 June to 29 October. In the early months of the season, egg-laying was recorded mainly within the top 1 m of the water column; however, a significant shift to deep water egg-laying was recorded between 7 July and 17 November at Site 1 and between 20 August and 29 October at Site 2. Egg clutches were preferentially laid at depths of up to 8.5 m during this time (Site 2), a feature of egg-laying hitherto unappreciated. Temperature and dissolved oxygen did not differ significantly among depths, but there was an increase in water clarity over time. However, the precise environmental triggers for deep water egg-laying are still unclear. These new insights into the reproductive behaviour of this species will be useful in developing control methods based on egg-removal.
Resumo:
Introduction of non-indigenous species can alter marine communities and ecosystems. In shellfish farming, transfer of livestock, especially oysters, is a common practice and potentially constitutes a pathway for non-indigenous introductions. Many species of seaweeds are believed to have been accidentally introduced in association with these transfers, but there is little direct evidence.
Resumo:
Primer sequences and initial characterization are presented for 10 microsatellite loci isolated from the German cockroach, Blattella germanica. In a sample of 30 individuals from a single population sample, all loci were polymorphic with two to 12 alleles segregating per locus and levels of observed heterozygosity ranging from 0.27 to 0.92. One locus showed a deficit of heterozygotes. Experimental conditions are described for polymerase chain reaction multiplexing, which enables the genotyping of eight loci in three electrophoretic runs consisting of one set of three and two sets of two markers. Seven primer sets cross-amplify in the related Blattella asahinai.
Resumo:
It has traditionally been considered that areas with high natural species richness are likely to be more resistant to non-indigenous species than those with lower numbers of species. However, this theory has been the subject of a debate over the last decade, since some studies have shown the opposite trend. In the present study, a macroalgal survey was carried out at 24 localities in Northern Ireland and southern England, using a quadrat approach in the lower littoral. The two opposing hypotheses were tested (negative versus positive relationship between native and non-indigenous species richness) in this marine environment. The effect of the presence of 'impacts', potential sources of disturbance and species introduction (e.g. marina, harbour or aquaculture), was also tested. A positive relationship was found between the number of non-indigenous species and the native species richness at the three different scales tested (quadrats, sites and localities). At no scale did a richer native assemblage appear to restrict the establishment of introduced species. The analyses revealed greater species richness and different community composition, as well as more non-indigenous species, in southern England relative to Northern Ireland. The presence of the considered impacts had an effect on the community composition and species richness in southern England but not in Northern Ireland. Such impacts had no effect on the non-indigenous species richness in either area.
Resumo:
Hull fouling is thought to have been the vector of introduction for many algal species. We studied ships arriving at a Mediterranean harbour to clarify the present role of commercial cargo shipping in algal introductions. A total of 31 macroalgal taxa were identified from 22 sampled hulls. The majority of records (58%) were of species with a known cosmopolitan geographical distribution. Due to a prevalence of cosmopolitan species and a high turnover of fouling communities, species composition of assemblages did not appear to be influenced by the area of origin, length of ship or age of coating. In the light of the present results, hull fouling on standard trading commercial vessels does not seem to pose a significant risk for new macroalgal species introductions. However, a high proportion of non-cosmopolitan species found on a ship with non-toxic coating may modify this assessment, especially in the light of the increasing use of such coatings and the potential future changes in shipping routes.
Resumo:
Catalysts based on molybdena (MoO3) reduced at mild temperatures are highly active and selective for the hydroisomerization of alkanes: however, further catalyst development has been hampered by the structural complexity of the material and the controversy regarding the nature of the active phase. The present work is aimed at determining the relationship between the content of carbon present in an oxycarbide phase and the activity for n-butane hydroisomerization. A series of temperature-programmed oxidation (TPO) and temporal analysis of product (TAP) data showed that the oxycarbidic carbon content is not related to the activity of the sample for the isomerization of n-butane to isobutane. The formation of a carbon-containing phase is, therefore, not crucial to obtain an active catalyst. This study also highlights the capability of the multi-pulse TAP technique to investigate structure-activity relationships over materials with readily variable atomic composition. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The present work emphasizes the importance of including a full quantitative analysis when in situ operando methods are used to investigate reaction mechanisms and reaction intermediates. The fact that some surface species exchange at a similar rate to the reaction product during isotopic transients is a necessary but not sufficient criterion for participation as a key reaction intermediate. This is exemplified here in the case of highly active low-temperature water-gas shift (WGS) catalysts based on gold and platinum. Operando DRIFTS data, isotopic exchanges, and DRIFTS calibration curves relating the concentration of formate species to the corresponding DRIFTS band intensity were combined to obtain a quantitative measure of the specific rate of formate decomposition. Despite displaying a rapid isotopic exchange rate (sometimes as fast as that of the reaction product CO2), the concentration of formates seen by DRIFTS was found to account for at most only 10% of the CO2 produced under the experimental conditions reported herein. These new results obtained on Au/CeZrO4 and Pt/CeO2 preparations (which are among the most active low-temperature WGS catalysts reported to date), led to the same conclusions regarding the minor role of IR-observable formates as those obtained in the case of less active Au/Ce(La)O-2 and Pt/ZrO2 catalysts. (c) 2007 Elsevier Inc. All rights reserved.
Resumo:
The present report investigates the role of formate species as potential reaction intermediates for the WGS reaction (CO + H2O -> CO2 + H-2) over a Pt-CeO2 catalyst. A combination of operando techniques, i.e., in situ diffuse reflectance FT-IR (DRIFT) spectroscopy and mass spectrometry (MS) during steady-state isotopic transient kinetic analysis (SSITKA), was used to relate the exchange of the reaction product CO2 to that of surface formate species. The data presented here suggest that a switchover from a non-formate to a formate-based mechanism could take place over a very narrow temperature range (as low as 60 K) over our Pt-CeO2 catalyst. This observation clearly stresses the need to avoid extrapolating conclusions to the case of results obtained under even slightly different experimental conditions. The occurrence of a low-temperature mechanism, possibly redox or Mars van Krevelen-like, that deactivates above 473 K because of ceria over-reduction is suggested as a possible explanation for the switchover, similarly to the case of the CO-NO reaction over Cu, I'd and Rh-CeZrOx (see Kaspar and co-workers [1-3]). (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
New
Resumo:
The nature of the surface species formed at the surface of 2 wt.% Pt/CeO2 catalyst during the forward water-gas-shift (WGS, CO + H2O -> CO2 + H-2) and the reverse reaction (RWGS) were essentially identical. More, the surface concentration of formate, carbonate and carbonyl species was similar in each case. The presence of well-resolved IR bands allowed an unequivocal relative quantitative analysis of each species, avoiding the use of the carboxylate stretching region (1600-1200 cm(-1)). However, the quantitative analysis in the case of an isotopic study was complicated due to the overlapping of the various isotope bands, yet this problem could be overcome by integrating the high-wavenumber part of the bands. The reactivity of the surface species formed under RWGS conditions was followed under two different gaseous streams. Firstly, the reactivity of these intermediates were followed under an inert gas (i.e., At), in which case carbonates were essentially stable and less reactive than formates. Secondly, the reactivity of the same surface species was followed when switching to the corresponding C-13-labelled feed (i.e., (CO2)-C-13 + H-2), in which case carbonates were exchanged significantly faster than formates. While carbonates species have been reported as reaction intermediate under reaction conditions, the increased stability or surface poisoning by these carbonates in the absence of reaction mixture was highlighted. Ultimately, this work re-emphasises the need to use steady-state conditions if the true operando reactivity of the adsorbates and structure of the solid are to be determined. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The production of hydrogen by steam reforming of bio-oils obtained from the fast pyrolysis of biomass requires the development of efficient catalysts able to cope with the complex chemical nature of the reactant. The present work focuses on the use of noble metal-based catalysts for the steam reforming of a few model compounds and that of an actual bio-oil. The steam reforming of the model compounds was investigated in the temperature range 650-950 degrees C over Pt, Pd and Rh supported on alumina and a ceria-zirconia sample. The model compounds used were acetic acid, phenol, acetone and ethanol. The nature of the support appeared to play a significant role in the activity of these catalysts. The use of ceria-zirconia, a redox mixed oxide, lead to higher H-2 yields as compared to the case of the alumina-supported catalysts. The supported Rh and Pt catalysts were the most active for the steam reforming of these compounds, while Pd-based catalysts poorly performed. The activity of the promising Pt and Rh catalysts was also investigated for the steam reforming of a bio-oil obtained from beech wood fast pyrolysis. Temperatures close to, or higher than, 800 degrees C were required to achieve significant conversions to COx and H-2 (e.g., H-2 yields around 70%). The ceria-zirconia materials showed a higher activity than the corresponding alumina samples. A Pt/ceria-zirconia sample used for over 9 h showed essentially constant activity, while extensive carbonaceous deposits were observed on the quartz reactor walls from early time on stream. In the present case, no benefit was observed by adding a small amount of O-2 to the steam/bio-oil feed (autothermal reforming, ATR), probably partly due to the already high concentration of oxygen in the bio-oil composition. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Research on the selective reduction of NOx with hydrocarbons under lean-burn conditions using non-zeolitic oxides and platinum group metal (PGM) catalysts has been critically reviewed. Alumina and silver-promoted alumina catalysts have been described in detail with particular emphasis on an analysis of the various reaction mechanisms that have been put forward in the literature. The influence of the nature of the reducing agent, and the preparation and structure of the catalysts have also been discussed and rationalised for several other oxide systems. It is concluded for non-zeolitic oxides that species that are strongly adsorbed on the surface, such as nitrates/nitrites and acetates, could be key intermediates in the formation of various reduced and oxidised species of nitrogen, the further reaction of which leads eventually to the formation of molecular nitrogen. For the platinum group metal catalysts, the different mechanisms that have been proposed in the literature have been critically assessed. It is concluded that although there is indirect, mainly spectroscopic, evidence for various reaction intermediates on the catalyst surface, it is difficult to confirm that any of these are involved in a critical mechanistic step because of a lack of a direct quantitative correlation between infrared and kinetic measurements. A simple mechanism which involves the dissociation of NO on a reduced metal surface to give N(ads) and O(ads), with subsequent desorption of N-2 and N2O and removal of O(ads) by the reductant can explain many of the results with the platinum group metal catalysts, although an additional contribution from organo-nitro-type species may contribute to the overall NOx reduction activity with these catalysts.
Resumo:
A series of twelve benzoate esters was metabolised, by species of the Phellinus genus of wood-rotting fungi, to yield the corresponding benzyl alcohol derivatives and eight salicylates. The isolation of a stable oxepine metabolite, from methyl benzoate, allied to evidence of the migration and retention of a carbomethoxy group ( the NIH Shift), during enzyme-catalysed ortho-hydroxylation of alkyl benzoates to form salicylates, is consistent with a mechanism involving an initial arene epoxidation step. This mechanism was confirmed by the isolation of a remarkably stable, optically active, substituted benzene oxide metabolite of methyl 2-( trifluoromethyl) benzoate, which slowly converted into the racemic form. The arene oxide was found to undergo a cycloaddition reaction with 4-phenyl-1,2,4-triazoline-3,5-dione to yield a crystalline cycloadduct whose structure and racemic nature was established by X-ray crystallography. The metabolite was also found to undergo some novel benzene oxide reactions, including epoxidation to give an anti-diepoxide, base-catalysed hydrolysis to form a trans-dihydrodiol and acid-catalysed aromatisation to yield a salicylate derivative via the NIH Shift of a carbomethoxy group.
Resumo:
Toluene dioxygenase (TDO)-catalysed benzylic hydroxylation of indene substrates (8, 16 and 17), using whole cell cultures of Pseudomonas putida UV4, was found to yield inden-1-ol (14 and 22) and indan-1-one bioproducts (15 and 23). The formation of these bioproducts is consistent with the involvement of carbon-centred radical intermediates. TDO-catalysed oxidation of indenes 8 and 16 also gave cis-diols 13 and 18 respectively. TDO and naphthalene dioxygenase (NDO), used as both whole-cell preparations and as purified enzymes, were found to catalyse the benzylic hydroxylation of chromane 30, deuteriated (+/-)-chromane 30(D) and enantiomers (4S)-30(D) and (4R)-30(D) to yield (4R)- and (4S)-chroman-4-ols 31/31(D) respectively. The mechanism of benzylic hydroxylation of chromane 30/30(D) involves the stereoselective abstraction of a pro-R (with TDO) or a pro-S (with NDO) hydrogen atom at C-4 and a marked preference for retention of configuration.
Resumo:
The nature of the silver phases of Ag/Al2O3 catalysts (prepared by silver nitrate impregnation followed by calcination) was investigated by X-ray diffractograms (XRD), transmission electron microscopy (TEM) and UV-VIS analyses and related to the activity of the corresponding materials for the oxidation of NO to NO2. The UV-VIS spectrum of the 1.2 wt.% Ag/Al2O3 exhibited essentially one band associated with Ag+ species and the NO2 yields measured over this material were negligible. A 10 wt.% Ag/Al2O3 material showed the presence of oxidic species of silver (as isolated Ag+ cations and silver aluminate), but the UV-VIS data also revealed the presence of some metallic silver. The activity for the NO oxidation to NO2 of this sample was moderate. The same 10% sample either reduced in H-2 or used for the C3H6-selective catalytic reduction (SCR) of NO showed a significantly larger proportion of silver metallic phases and these samples displayed a high activity for the formation of NO2. These data show that the structure and nature of the silver phases of Ag/Al2O3 catalysts can markedly change under reaction feed containing only a fraction of reducing agent (i.e. 500 ppm of propene) in net oxidizing conditions (2.5% O-2). The low activity for N-2 formation during the C3H6-SCR of NO (reported in an earlier study) over the high loading sample can. therefore, he related to the presence of metallic silver. which is yet a good catalyst for NO oxidation to NO2. The reverse observations apply for the oxide species observed over the low loading sample, which is a good SCR catalyst but do not oxidize NO to NO2. (C) 2002 Elsevier Science B.V. All rights reserved.