144 resultados para HYDROPHOBIC ADHESIVES
Resumo:
From the molecular mechanism of antagonist unbinding in the ß(1) and ß(2) adrenoceptors investigated by steered molecular dynamics, we attempt to provide further possibilities of ligand subtype and subspecies selectivity. We have simulated unbinding of ß(1) -selective Esmolol and ß(2) -selective ICI-118551 from both receptors to the extracellular environment and found distinct molecular features of unbinding. By calculating work profiles, we show different preference in antagonist unbinding pathways between the receptors, in particular, perpendicular to the membrane pathway is favourable in the ß(1) adrenoceptor, whereas the lateral pathway involving helices 5, 6 and 7 is preferable in the ß(2) adrenoceptor. The estimated free energy change of unbinding based on the preferable pathway correlates with the experimental ligand selectivity. We then show that the non-conserved K347 (6.58) appears to facilitate in guiding Esmolol to the extracellular surface via hydrogen bonds in the ß(1) adrenoceptor. In contrast, hydrophobic and aromatic interactions dominate in driving ICI-118551 through the easiest pathway in the ß(2) adrenoceptor. We show how our study can stimulate design of selective antagonists and discuss other possible molecular reasons of ligand selectivity, involving sequential binding of agonists and glycosylation of the receptor extracellular surface. © 2012 John Wiley & Sons A/S.
Resumo:
Novel drug delivery systems (DDS) to improve the pharmacokinetic profile of hydrophobic drugs following oral administration are an area of keen interest in drug research. An ideal DDS should not adversely affect drug activity, be capable of delivering a therapeutic dose of drug, and allow homogenous drug loading and drug release. Mesoporous silica has been proposed for this application, with ibuprofen employed as the model drug. It was hypothesised that mesoporous silica MCM-41 is capable of delivering a pharmacologically therapeutic dose of ibuprofen. Ibuprofen-loaded MCM-41 can be prepared reproducibly at a drug to carrier ratio of 30% (wt/wt). The release profile was seen to be 90% within 2 h. Initial assessment of COX-1 inhibitory activity suggests the absence of adverse effects attributable to drug-carrier interaction. The results of this study provide further evidence in support of the proposed use of mesoporous silica in drug delivery.
Resumo:
Gentamicin is an aminoglycoside antibiotic commonly used for treating Pseudomonas infections, but its use is limited by a relatively short half-life. In this investigation, developed a controlled-release gentamicin formulation using poly(lactide-co-glycolide) (PLGA) nanoparticles. We demonstrate that entrapment of the hydrophilic drug into a hydrophobic PLGA polymer can be improved by increasing the pH of the formulation, reducing the hydrophilicity of the drug and thus enhancing entrapment, achieving levels of up to 22.4 µg/mg PLGA. Under standard incubation conditions, these particles exhibited controlled release of gentamicin for up to 16 days. These particles were tested against both planktonic and biofilm cultures of P. aeruginosa PA01 in vitro, as well as in a 96-hour peritoneal murine infection model. In this model, the particles elicited significantly improved antimicrobial effects as determined by lower plasma and peritoneal lavage colony-forming units and corresponding reductions of the surrogate inflammatory indicators interleukin-6 and myeloperoxidase compared to free drug administration by 96 hours. These data highlight that the controlled release of gentamicin may be applicable for treating Pseudomonas infections.
Resumo:
The barrier imposed by lipopolysaccharide (LPS) in the outer membrane of Gram-negative bacteria presents a significant challenge in treatment of these organisms with otherwise effective hydrophobic antibiotics. The absence of L-glycero-D-manno-heptose in the LPS molecule is associated with a dramatically increased bacterial susceptibility to hydrophobic antibiotics and thus enzymes in the ADP-heptose biosynthesis pathway are of significant interest. GmhA catalyzes the isomerization of D-sedoheptulose 7-phosphate into D-glycero-D-manno-heptose 7-phosphate, the first committed step in the formation of ADP-heptose. Here we report structures of GmhA from Escherichia coli and Pseudomonas aeruginosa in apo, substrate, and product-bound forms, which together suggest that GmhA adopts two distinct conformations during isomerization through reorganization of quaternary structure. Biochemical characterization of GmhA mutants, combined with in vivo analysis of LPS biosynthesis and novobiocin susceptibility, identifies key catalytic residues. We postulate GmhA acts through an enediol-intermediate isomerase mechanism.
Resumo:
A novel acceptor substrate for galactosyltransferase was synthesized containing GlcNAcalpha-pyrophosphate, covalently bound to a hydrophobic phenoxyundecyl moiety (GlcNAc alpha-O-PO(3)-PO(3)-(CH(2))(11)-O-Phenyl). The new substrate was used to develop an assay for a galactosyltransferase activity from Escherichia coli strain VW187 that is involved in lipopolysaccharide synthesis and has not been studied by others. We showed that Gal was transferred from UDP-Gal to the novel acceptor substrate. This was a significant improvement over our previous preliminary assays of the enzyme using endogenous substrate, and showed that these synthetic substrates are useful for assaying enzymes that utilize lipid-bound substrates in O-chain synthesis in Gram-negative bacteria.
Resumo:
In this work, we demonstrate that the wbbD gene of the O7 lipopolysaccharide (LPS) biosynthesis cluster in Escherichia coli strain VW187 (O7:K1) encodes a galactosyltransferase involved in the synthesis of the O7-polysaccharide repeating unit. The galactosyltransferase catalyzed the transfer of Gal from UDP-Gal to the GlcNAc residue of a GlcNAc-pyrophosphate-lipid acceptor. A mutant strain with a defective wbbD gene was unable to form O7 LPS and lacked this specific galactosyltransferase activity. The normal phenotype was restored by complementing the mutant with the cloned wbbD gene. To characterize the WbbD galactosyltransferase, we used a novel acceptor substrate containing GlcNAcalpha-pyrophosphate covalently bound to a hydrophobic phenoxyundecyl moiety (GlcNAc alpha-O-PO(3)-PO(3)-(CH(2))(11)-O-phenyl). The WbbD galactosyltransferase had optimal activity at pH 7 in the presence of 2.5 mM MnCl(2). Detergents in the assay did not increase glycosyl transfer. Digestion of enzyme product by highly purified bovine testicular beta-galactosidase demonstrated a beta-linkage. Cleavage of product by pyrophosphatase and phosphatase, followed by HPLC and NMR analyses, revealed a disaccharide with the structure Gal beta1-3GlcNAc. Our results conclusively demonstrate that WbbD is a UDP-Gal: GlcNAcalpha-pyrophosphate-R beta1,3-galactosyltransferase and suggest that the novel synthetic glycolipid acceptor may be generally applicable to characterize other bacterial glycosyltransferases.
Resumo:
We have determined that gene HI#1181 of Haemophilus influenzae is a homolog of Escherichia coli gmhA (previously designated lpcA) (J. S. Brooke and M. A. Valvano, J. Biol. Chem. 271:3608-3614, 1996), which encodes a phosphoheptose isomerase catalyzing the first step of the biosynthesis of ADP-L-glycero-D-manno heptose. Mutations in this gene are associated with a heptoseless core lipopolysaccharide which determines an increased outer membrane permeability to hydrophobic compounds. The cloned H. influenzae gmhA restored the synthesis of a complete core in the gmhA-deleted E. coli strain chi711. Amino acid sequence comparisons of the GmhA proteins of E. coli and H. influenzae with other proteins in the databases revealed the existence of a novel family of phosphosugar a1do-keto isomerases.
Resumo:
An 18.2 kDa protein from the liver fluke, Fasciola hepatica has been identified and characterised. The protein shows strongest sequence similarity to egg antigen proteins from Schistosoma mansoni, Schistosoma japonicum and Clonorchis sinensis. The protein is predicted to adopt a calmodulin-like fold; it thus represents the third calmodulin-like protein to be characterised in F. hepatica and has been named FhCaM3. Compared to the classical calmodulin structure there are some variations. Most noticeably, the central, linker helix is disrupted by a cysteine residue. Alkaline native gel electrophoresis showed that FhCaM3 binds calcium ions. This binding event increases the ability of the protein to bind the hydrophobic fluorescent probe 8-anilinonaphthalene-1-sulphonate, consistent with an increase in surface hydrophobicity as seen in other calmodulins. FhCaM3 binds to the calmodulin antagonists trifluoperazine and W7, but not to the myosin regulatory light chain binding compound praziquantel. Immunolocalisation demonstrated that the protein is found in eggs and vitelline cells. Given the critical role of calcium ions in egg formation and hatching this suggests that FhCaM3 may play a role in calcium signalling in these processes. Consequently the antagonism of FhCaM3 may, potentially, offer a method for inhibiting egg production and thus reducing the spread of infection.
Resumo:
In trematodes, there is a family of proteins which combine EF-hand-containing domains with dynein light chain (DLC)-like domains. A member of this family from the liver fluke, Fasciola hepatica-FhCaBP4-has been identified and characterised biochemically. FhCaBP4 has an N-terminal domain containing two imperfect EF-hand sequences and a C-terminal dynein light chain-like domain. Molecular modelling predicted that the two domains are joined by a flexible linker. Native gel electrophoresis demonstrated that FhCaBP4 binds to calcium, manganese, barium and strontium ions, but not to magnesium or zinc ions. The hydrophobic, fluorescent probe 8-anilinonaphthalene-1-sulphonate bound more tightly to FhCaBP4 in the presence of calcium ions. This suggests that the protein undergoes a conformational change on ion binding which increases the number of non-polar residues on the surface. FhCaBP4 was protected from limited proteolysis by the calmodulin antagonist W7, but not by trifluoperazine or praziquantel. Protein-protein cross-linking experiments showed that FhCaBP4 underwent calcium ion-dependent dimerisation. Since DLCs are commonly dimeric, it is likely that FhCaBP4 dimerises through this domain. The molecular model reveals that the calcium ion-binding site is located close to a key sequence in the DLC-like domain, suggesting a plausible mechanism for calcium-dependent dimerisation.
Resumo:
Fusion process is known to be the initial step of viral infection and hence targeting the entry process is a promising strategy to design antiviral therapy. The self-inhibitory peptides derived from the enveloped (E) proteins function to inhibit the proteinprotein interactions in the membrane fusion step mediated by the viral E protein. Thus, they have the potential to be developed into effective antiviral therapy. Herein, we have developed a Monte Carlo-based computational method with the aim to identify and optimize potential peptide hits from the E proteins. The stability of the peptides, which indicates their potential to bind in situ to the E proteins, was evaluated by two different scoring functions, dipolar distance-scaled, finite, ideal-gas reference state and residue-specific all-atom probability discriminatory function. The method was applied to a-helical Class I HIV-1 gp41, beta-sheet Class II Dengue virus (DENV) type 2 E proteins, as well as Class III Herpes Simplex virus-1 (HSV-1) glycoprotein, a E protein with a mixture of a-helix and beta-sheet structural fold. The peptide hits identified are in line with the druggable regions where the self-inhibitory peptide inhibitors for the three classes of viral fusion proteins were derived. Several novel peptides were identified from either the hydrophobic regions or the functionally important regions on Class II DENV-2 E protein and Class III HSV-1 gB. They have potential to disrupt the proteinprotein interaction in the fusion process and may serve as starting points for the development of novel inhibitors for viral E proteins.
Resumo:
The synthesis and in vitro evaluation of four cationic lipid gene delivery vectors, characterized by acyclic or macrocyclic, and saturated or unsaturated hydrophobic regions, is described. The synthesis employed standard protocols, including ring-closing metathesis for macrocyclic lipid construction. All lipoplexes studied, formulated from plasmid DNA and a liposome composed of a synthesized lipid, 1,2-dimyristoyl-sn-glycero-3-ethylphosphocholine (EPC), and either 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) or cholesterol as co-lipid, exhibited plasmid DNA binding and protection from DNase I degradation, and concentration dependent cytotoxicity using Chinese hamster ovary-K1 cells. The transfection efficiency of formulations with cholesterol outperformed those with DOPE, and in many cases the EPC/cholesterol control, and formulations with a macrocyclic lipid (+/- 10:1) outperformed their acyclic counterparts (+/- 3:1).
Resumo:
Cataract surgery is one of the most commonly-practiced surgical procedures in Western medicine, and, while complications are rare, the most serious is infectious postoperative endophthalmitis. Bacteria may adhere to the implanted intraocular lens (IOL) and subsequent biofilm formation can lead to a chronic, difficult to treat infection. To date, no method to reduce the incidence of infectious endophthalmitis through bacterial elimination, while retaining optical transparency, has been reported. In this study we report a method to optimise the localisation of a cationic porphyrin at the surface of suitable acrylate copolymers, which is the first point of contact with potential pathogens. The porphyrin catalytically generates short-lived singlet oxygen, in the presence of visible light, which kills adherent bacteria indiscriminately. By restricting the photosensitiser to the surface of the biomaterial, reduction in optical transparency is minimised without affecting efficacy of singlet oxygen production. Hydrogel IOL biomaterials incorporating either methacrylic acid (MAA) or methyl methacrylate (MMA) co-monomers allow tuning of the hydrophobic and anionic properties to optimise the localisation of porphyrin. Physiochemical and antimicrobial properties of the materials have been characterised, giving candidate materials with self-generating, persistent anti-infective character against Gram-positive and Gram-negative organisms. Importantly, incorporation of porphyrin can also serve to protect the retina by filtering damaging shortwave visible light, due to the Soret absorption (?max) 430 nm). © 2012 Elsevier Ltd. All rights reserved.
Resumo:
Diverse parameters, including chaotropicity, can limit the function of cellular systems and thereby determine the extent of Earth's biosphere. Whereas parameters such as temperature, hydrophobicity, pressure, pH, Hofmeister effects, and water activity can be quantified via standard scales of measurement, the chao-/kosmotropic activities of environmentally ubiquitous substances have no widely accepted, universal scale. We developed an assay to determine and quantify chao-/kosmotropicity for 97 chemically diverse substances that can be universally applied to all solutes. This scale is numerically continuous for the solutes assayed (from +361kJkg-1mol-1 for chaotropes to -659kJkg-1mol-1 for kosmotropes) but there are key points that delineate (i) chaotropic from kosmotropic substances (i.e. chaotropes =+4; kosmotropes =-4kJkg-1mol-1); and (ii) chaotropic solutes that are readily water-soluble (log P<1.9) from hydrophobic substances that exert their chaotropic activity, by proxy, from within the hydrophobic domains of macromolecular systems (log P>1.9). Examples of chao-/kosmotropicity values are, for chaotropes: phenol +143, CaCl2 +92.2, MgCl2 +54.0, butanol +37.4, guanidine hydrochloride +31.9, urea +16.6, glycerol [>6.5M] +6.34, ethanol +5.93, fructose +4.56; for kosmotropes: proline -5.76, sucrose -6.92, dimethylsulphoxide (DMSO) -9.72, mannitol -6.69, trehalose -10.6, NaCl -11.0, glycine -14.2, ammonium sulfate -66.9, polyethylene glycol- (PEG-)1000 -126; and for relatively neutral solutes: methanol, +3.12, ethylene glycol +1.66, glucose +1.19, glycerol [<5M] +1.06, maltose -1.43 (kJkg-1mol-1). The data obtained correlate with solute interactions with, and structure-function changes in, enzymes and membranes. We discuss the implications for diverse fields including microbial ecology, biotechnology and astrobiology.
Resumo:
IQGAPs are cytoskeletal scaffolding proteins which collect information from a variety of signalling pathways and pass it on to the microfilaments and microtubules. There is a well-characterised interaction between IQGAP and calmodulin through a series of IQ-motifs towards the middle of the primary sequence. However, it has been shown previously that the calponin homology domain (CHD), located at the N-terminus of the protein, can also interact weakly with calmodulin. Using a recombinant fragment of human IQGAP1 which encompasses the CHD, we have demonstrated that the CHD undergoes a calcium ion-dependent interaction with calmodulin. The CHD can also displace the hydrophobic fluorescent probe 1-anilinonaphthalene-8-sulphonate from calcium-calmodulin, suggesting that the interaction involves non-polar residues on the surface of calmodulin. Molecular modelling identified a possible site on the CHD for calmodulin interaction. The physiological significance of this interaction remains to be discovered.
Resumo:
Purpose. The pH-dependent physicochemical properties of the antimicrobial quinolone, nalidixic acid, were exploited to achieve ‘intelligent’ drug release from a potential urinary catheter coating, poly(2-hydroxyethylmethacrylate) (p(HEMA)), in direct response to the elevated pH which occurs at the onset of catheter infection.
Methods. p(HEMA) hydrogels, and reduced-hydrophilicity copolymers incorporating methyl methacrylate, were loaded with nalidixic acid by a novel, surface particulate localization method, and characterized in terms of pH-dependent drug release and microbiological activity against the common urease-producing urinary pathogen Proteus mirabilis.
Results. The pH-dependent release kinetics of surface-localized nalidixic acid were 50- and 10-fold faster at pH 9, representing the alkaline conditions induced by urease-producing urinary pathogens, compared to release at pH 5 and pH 7 respectively. Furthermore, microbiological activity against P. mirabilis was significantly enhanced after loading surface particulate nalidixic acid in comparison to p(HEMA) hydrogels conventionally loaded with dispersed drug. The more hydrophobic methyl methacrylate-containing copolymers also demonstrated this pH responsive behavior, but additionally exhibited a sustained period of zero-order release.
Conclusions. The paradigm presented here provides a system with latent, immediate infection-responsive drug release followed by prolonged zero-order antimicrobial delivery, and represents an ‘intelligent’, infection-responsive, self-sterilizing biomaterial.