90 resultados para HEPA filtration
Resumo:
Background: Obesity is increasingly prevalent in many countries. Obesity is a major risk factor for the development of type 2 diabetes but its relationship with diabetic kidney disease (DKD) remains unclear. Some studies have suggested that the metabolic syndrome (including obesity) may be associated with DKD in type 1 diabetes. Aim: To investigate the association between obesity and DKD. Design: Retrospective cross-sectional study. Methods: National Diabetes Audit data were available for the 2007–08 cycle. Type 1 and 2 diabetes patients with both a valid serum creatinine and urinary albumin:creatinine ratio were included. DKD was defined as an estimated glomerular filtration rate (eGFR) <60 ml/min/1.73 m2, albuminuria or both. Logistic regression was used to analyse associations of obesity (body mass index ≥30 kg/m2) and other variables including year of birth, year of diagnosis, ethnicity and stage of kidney disease. Results: A total of 58 791 type 1 and 733 769 type 2 diabetes patients were included in the analysis. After adjustment, when compared with type 1 diabetes patients with normal renal function those with DKD were up to twice as likely to be obese. Type 2 DKD patients were also more likely to be obese. For example, type 2 diabetes patients with an eGFR <15 ml/min/1.73 m2 and normoalbuminuria, microalbuminuria or macroalbuminuria were all more likely to be obese; odds ratios (95% CI) 1.65 (1.3–2.1), 1.56 (1.28–1.92) and 1.27 (1.05–1.54), respectively. Conclusions: This study has highlighted a strong association between obesity and kidney disease in type 1 diabetes and confirmed their association in type 2 diabetes.
Resumo:
The course of autosomal dominant polycystic kidney disease (ADPKD) is often associated with pain, hypertension, and kidney failure. Preclinical studies indicated that vasopressin V(2)-receptor antagonists inhibit cyst growth and slow the decline of kidney function.
Resumo:
Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) catalyses one of the two steps in glycolysis which generate the reduced coenzyme NADH. This reaction precedes the two ATP generating steps. Thus, inhibition of GAPDH will lead to substantially reduced energy generation. Consequently, there has been considerable interest in developing GAPDH inhibitors as anti-cancer and anti-parasitic agents. Here, we describe the biochemical characterisation of GAPDH from the common liver fluke Fasciola hepatica (FhGAPDH). The primary sequence of FhGAPDH is similar to that from other trematodes and the predicted structure shows high similarity to those from other animals including the mammalian hosts. FhGAPDH lacks a binding pocket which has been exploited in the design of novel antitrypanosomal compounds. The protein can be expressed in, and purified from Escherichia coli; the recombinant protein was active and showed no cooperativity towards glyceraldehyde 3-phosphate as a substrate. In the absence of ligands, FhGAPDH was a mixture of homodimers and tetramers, as judged by protein-protein crosslinking and analytical gel filtration. The addition of either NAD(+) or glyceraldehyde 3-phosphate shifted this equilibrium towards a compact dimer. Thermal scanning fluorimetry demonstrated that this form was considerably more stable than the unliganded one. These responses to ligand binding differ from those seen in mammalian enzymes. These differences could be exploited in the discovery of reagents which selectively disrupt the function of FhGAPDH.
Resumo:
Chronic kidney disease (CKD) patients are especially prone to vitamin D insufficiency. Narrow-band ultraviolet B (NB-UVB) treatment increases serum 25-hydroxyvitamin D [25(OH)D] in dermatological patients, and we studied whether it also improves vitamin D balance in CKD patients on haemodialysis.
Resumo:
Background
Chronic kidney disease is now regarded as a risk factor for cardiovascular disease. The impact of occupational or non-occupational physical activity (PA) on moderate decreases of renal function is uncertain.
ObjectivesWe aimed to identify the potential association of PA (occupational and leisure-time) on early decline of estimated glomerular filtration rate (eGFR) and to determine the potential mediating effect of PA on the relationship between eGFR and heart disease.
MethodsFrom the PRIME study analyses were conducted in 1058 employed men. Energy expended during leisure, work and commuting was calculated. Linear regression analyses were used to determine the link between types of PA and moderate decrements of eGFR determined with the KDIGO guideline at the baseline assessment. Cox proportional hazards analyses were used to explore the potential effect of PA on the relationship between eGFR and heart disease, ascertained during follow-up over 10 years.
ResultsFor these employed men, and after adjustment for known confounders of GFR change, more time spent sitting at work was associated with increased risk of moderate decline in kidney function, while carrying objects or being active at work was associated with decreased risk. In contrast, no significant link with leisure PA was apparent. No potential mediating effect of occupational PA was found for the relationship between eGFR and coronary heart disease.
ConclusionOccupational PA (potential modifiable factors) could provide a dual role on early impairment of renal function, without influence on the relationship between early decrease of e-GFR and CHD risk.
Resumo:
BACKGROUND: The failure of a kidney transplant is now a common reason for initiation of dialysis therapy. Kidney transplant recipients commencing dialysis have greater morbidity and mortality than transplant-naïve, incident dialysis patients. This study aimed to identify variables associated with survival after graft failure.
METHODS: All recipients of first, deceased donor kidney transplants performed in Northern Ireland between 1986 and 2005 who had a functioning graft at 12 months were included (n = 585). Clinical and blood-derived variables (age, gender, primary renal disease, diabetic status, smoking status, human leukocyte antigen (HLA) mismatch, acute rejection episodes, immunosuppression, cardiovascular disease, graft survival, haemoglobin, albumin, phosphate, C reactive protein, estimated glomerular filtration rate (eGFR), rate of eGFR decline, dialysis modality, and access) were collected prospectively and investigated for association with re-transplantation and survival. The association between re-transplantation and survival was explored by modelling re-transplantation as a time-dependent covariate.
RESULTS: Median follow-up time was 12.1 years. Recipients with a failing graft (158/585) demonstrated rapid loss of eGFR prior to graft failure, reducing the time available to plan for alternative renal replacement therapy. Median survival after graft failure was 3.0 years. In multivariate analysis, age and re-transplantation were associated with survival after graft failure. Re-transplantation was associated with an 88% reduction in mortality.
CONCLUSIONS: Optimal management of kidney transplant recipients with failing grafts requires early recognition of declining function and proactive preparation for re-transplantation given the substantial survival benefit this confers. The survival benefit associated with re-transplantation persists after prolonged exposure to immunosuppressive therapy.
Resumo:
An acid-functionalized ionic liquid was entrapped within a silica gel to yield a recyclable liquid phase catalyst for the dehydration of rac-1-phenyl ethanol. Hot filtration tests showed that the activity was within the gel. Comparison with an analogous SILP system revealed fundamental differences in the properties and behavior of the materials.
Resumo:
The water treatment capability of a novel photocatalytic slurry reactor was investigated using methylene blue (MB) as a model pollutant in an aqueous suspension. A pellet TiO 2 catalyst was employed and this freed the system from the need of filtration of catalyst following photocatalysis. This configuration combines the high surface area contact of catalyst with pollutant of the slurry reactor and also offers a high illumination of catalyst by its unique array of weir-like baffles. In this work, the batch adsorption of MB from aqueous solution (10μM) onto the TiO 2 catalyst was studied, adsorption isotherms and kinetics were determined from the experimental data. Complete degradation of MB was achieved within 60 min illumination with various loadings of catalyst (30-200 g L -1). A modest catalyst loading (30 g L -1) achieved 98% degradation within 60 min of irradiation. Experimental results indicate that this novel reactor configuration has a high effective mass transfer rate and UV light penetration characteristics.
Resumo:
If cities are to become more sustainable and resilient to change it is likely that they will have to engage with food at increasingly localised levels, in order to reduce their dependancy on global systems. With 87 percent of developed regions estimated to be living in cities by 2050 it can be assumed that the majority of this localised production will occur in and around cities.
As part of a 12 month engagement, Queen’s University Belfast designed and implemented an elevated aquaponic food system spanning the top floor and exterior roof space of a disused mill in Manchester, England. The experimental aquaponic system was developed to explore the possibilities and difficulties associated with containing fish tanks, filtration units, vertical growing systems and roof top growing systems within and upon existing buildings, including the structural considerations needed when undertaking such transformations. Although capable of producing 4000 crops at any one time, the elevated aquaponic system utilised space within the existing building, which could otherwise be used as lettable area, and also located some crop growth within the building where light levels are reduced.
The following paper takes the research collected from the elevated aquaponic system and extrapolates the findings across a whole city. The resulting research enables the agricultural productive capacity of todays cities to be determined and a frame work of implementation to be developed for city wide food production. The research focuses specifically on facade and roof based systems, thus elevating the need to utilise lettable area within cities in addition to locating crops where light levels are highest.
Resumo:
Leloir pathway enzyme uridine diphosphate (UDP)-galactose 4'-epimerase from the common liver fluke Fasciola hepatica (FhGALE) was identified and characterized. The enzyme can be expressed in, and purified from, Escherichia coli. The recombinant enzyme is active: the K(m) (470 μM) is higher than the corresponding human enzyme (HsGALE), whereas the k(cat) (2.3 s(-1)) is substantially lower. FhGALE binds NAD(+) and has shown to be dimeric by analytical gel filtration. Like the human and yeast GALEs, FhGALE is stabilized by the substrate UDP-galactose. Molecular modelling predicted that FhGALE adopts a similar overall fold to HsGALE and that tyrosine 155 is likely to be the catalytically critical residue in the active site. In silico screening of the National Cancer Institute Developmental Therapeutics Program library identified 40 potential inhibitors of FhGALE which were tested in vitro. Of these, 6 showed concentration-dependent inhibition of FhGALE, some with nanomolar IC50 values. Two inhibitors (5-fluoroorotate and N-[(benzyloxy)carbonyl]leucyltryptophan) demonstrated selectivity for FhGALE over HsGALE. These compounds also thermally destabilized FhGALE in a concentration-dependent manner. Interestingly, the selectivity of 5-fluoroorotate was not shown by orotic acid, which differs in structure by 1 fluorine atom. These results demonstrate that, despite the structural and biochemical similarities of FhGALE and HsGALE, it is possible to discover compounds which preferentially inhibit FhGALE.
Resumo:
Kenyan tannery and associated environmental samples were selected for ecotoxicological assessment. A tool-kit of techniques was developed, including whole-cell biosensor and chemical assays. A luminescence based bacterial biosensor (Escherichia coli HB101 pUCD607) (via a multi-copy plasmid) was used for toxicity assessment. Samples were manipulated prior to biosensor interrogation to identify the nature of the toxic contaminants. Untreated samples (before any manipulations) showed a strong toxic effect at the discharge point in comparison to other sampling points. Sparging was used to identify toxicity associated with volatile organics. The toxicity of contaminants, removed by treatment with activated charcoal was identified for all the sampling points except for those upstream of effluent discharges. Filtration identified toxicity associated with suspended solids. Changes in availability of toxic contaminants due to pH adjustment of most samples from the tannery effluent treatment pits were also associated with the extreme pH values (4.0 and 8.0). The approach used has highlighted the complexicity of toxic pollutants in effluent from the tanning industry and the dissection of toxicity points to possible remediation strategies for effluents from the tanning industry.
Resumo:
Kinetic demixing and decomposition were studied on three La0.6Sr0.4Co0.2Fe0.8O3- δ oxygen-separation hollow fibre membrane modules, which were operated under a 0.21/0.009bar oxygen partial pressure difference at 950°C for 1128, 3672 and 5512h, respectively. The post-operation membranes were characterized by Secondary Ion Mass Spectrometry, Scanning Electronic Microscope, Energy Dispersive Spectrum and X-ray Diffraction. The occurrence of kinetic demixing and decomposition was confirmed through the microstructural evolution of the membranes. Secondary-phase grains were found on the air-side surface of the membranes after the long-term operation and Co and Fe enrichment as well as La depletion was found on the surface and in the bulk at the air side. Cation diffusivities were found to be in the order Co>Fe>Sr>La. Kinetic demixing and decomposition rates of the membranes at the air side were found to be self-accelerating with time; the role of A-site deficiency in the perovskite lattice in the bulk near the air side surface is implicated in the mechanism. The oxygen permeability was not affected by the kinetic demixing and decomposition of the material during long-term operation (up to 5512h), however, we may expect permeability to be affected by secondary phase formation on the air-side surface at even longer operational times. © 2010 Elsevier B.V.
Resumo:
Objective - The reported association between calibrated integrated backscatter (cIB) and myocardial fibrosis is based on study of patients with dilated or hypertrophic cardiomyopathy and extensive (mean 15–34%) fibrosis. Its association with lesser degrees of fibrosis is unknown. We examined the relationship between cIB and myocardial fibrosis in patients with coronary artery disease.
Methods - Myocardial histology was examined in left ventricular epicardial biopsies from 40 patients (29 men and 11 women) undergoing coronary artery bypass graft surgery, who had preoperative echocardiography with cIB measurement.
Results - Total fibrosis (picrosirius red staining) varied from 0.7% to 4%, and in contrast to previous reports, cIB showed weak inverse associations with total fibrosis (r=−0.32, p=0.047) and interstitial fibrosis (r=−0.34, p=0.03). However, cIB was not significantly associated with other histological parameters, including immunostaining for collagens I and III, the advanced glycation end product (AGE) Nε-(carboxymethyl)lysine (CML) and the receptor for AGEs (RAGE). When biomarkers were examined, cIB was weakly associated with log plasma levels of amino-terminal pro-B-type natriuretic peptide (r=0.34, p=0.03), creatinine (r=0.33, p=0.04) and glomerular filtration rate (r=−0.33, p=0.04), and was more strongly associated with log plasma levels of soluble vascular endothelial growth factor receptor-1 (sVEGFR-1) (r=0.44, p=0.01) and soluble RAGE (r=0.53, p=0.002).
Conclusions - Higher cIB was not a marker of increased myocardial fibrosis in patients with coronary artery disease, but was associated with higher plasma levels of sVEGFR-1 and soluble RAGE. The role of cIB as a non-invasive index of fibrosis in clinical studies of patients without extensive fibrosis is, therefore, questionable.
Resumo:
Gravel aquifers act as important potable water sources in central western Europe yet they are subject to numerous contamination pressures. Compositional and textural heterogeneity makes protection zone delineation around groundwater supplies in these units challenging; artificial tracer testing aids characterization. This paper reappraises previous tracer test results in light of new geological and microbiological data. Comparative passive gradient testing, using a fluorescent solute (Uranine), virus (H40/1 bacteriophage), and comparably sized bacterial tracers Escherichia coli and Pseudomonas putida, was used to investigate a calcareous gravel aquifer’s ability to remove microbiological contaminants at a test site near Munich, Germany. Test results revealed E. coli relative recoveries could exceed those of H40/1 at monitoring wells 10 m and 20 m from an injection well by almost four times; P. putida recoveries varied by a factor of up to three between wells. Application of filtration theory suggested greater attenuation of H40/1 relative to similarly charged E. coli occurred due to differences in microorganism size, while estimated collision efficiencies appeared comparable. By contrast, more positively charged P. putida experienced greater attenuation at one monitoring point, while lower attenuation rates at the second location indicated the influence of geochemical heterogeneity. Test findings proved consistent with observations from nearby fresh outcrops that suggested thin open framework gravel beds dominated mass transport in the aquifer, while discrete intervals containing stained clasts reflect localized geochemical heterogeneity. Study results highlight the utility of reconciling outcrop observations with artificial tracer test responses, using microbiological tracers with well-defined properties, to characterize aquifer heterogeneity.
Resumo:
A method is described for the rapid extraction of pectic substances from alcohol insoluble solids (AIS) from material of plant origin, especially fruit. Samples of AIS can be prepared for galacturonic acid assay within 60 min using extraction with 0·5m HCl in a Fibertec-1 system (Tecator) for 30 min. The extraction conditions are carefully standardised and operator error is reduced by the elimination of transfer steps, particularly during filtration. The results obtained for plant-derived alcohol insoluble solids containing from 10% to 33% pectic substances were in close agreement with those obtained by enzymic hydrolysis using a commercially available enzyme preparation (Ultrazyme). The method will have application in the rapid, routine estimation of pectic substances in plant materials. © 1987.