96 resultados para Groundwater Hydrology


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In coral islands, groundwater is a crucial freshwater resource for terrestrial life, including human water supply. Response of the freshwater lens to expected climate changes and subsequent vegetation alterations is quantified for Grande Glorieuse, a low-lying coral island in the Western Indian Ocean. Distributed models of recharge, evapotranspiration and saltwater phytotoxicity are integrated into a variable-density groundwater model to simulate the evolution of groundwater salinity. Model results are assessed against field observations including groundwater and geophysical measurements. Simulations show the major control currently exerted by the vegetation with regards to the lens morphology and the high sensitivity of the lens to climate alterations, impacting both quantity and salinity. Long-term changes in mean sea level and climatic conditions (rainfall and evapotranspiration) are predicted to be responsible for an average increase in salinity approaching 140 % (+8 kg m-3) when combined. In low-lying areas with high vegetation density, these changes top +300 % (+10 kg m-3). However, due to salinity increase and its phytotoxicity, it is shown that a corollary drop in vegetation activity can buffer the alteration of fresh groundwater. This illustrates the importance of accounting for vegetation dynamics to study groundwater in coral islands.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Accurate conceptual models of groundwater systems are essential for correct interpretation of monitoring data in catchment studies. In surface-water dominated hard rock regions, modern ground and surface water monitoring programmes often have very high resolution chemical, meteorological and hydrological observations but lack an equivalent emphasis on the subsurface environment, the properties of which exert a strong control on flow pathways and interactions with surface waters. The reasons for this disparity are the complexity of the system and the difficulty in accurately characterising the subsurface, except locally at outcrops or in boreholes. This is particularly the case in maritime north-western Europe, where a legacy of glacial activity, combined with large areas underlain by heterogeneous igneous and metamorphic bedrock, make the structure and weathering of bedrock difficult to map or model. Traditional approaches which seek to extrapolate information from borehole to field-scale are of limited application in these environments due to the high degree of spatial heterogeneity. Here we apply an integrative and multi-scale approach, optimising and combining standard geophysical techniques to generate a three-dimensional geological conceptual model of the subsurface in a catchment in NE Ireland. Available airborne LiDAR, electromagnetic and magnetic data sets were analysed for the region. At field-scale surface geophysical methods, including electrical resistivity tomography, seismic refraction, ground penetrating radar and magnetic surveys, were used and combined with field mapping of outcrops and borehole testing. The study demonstrates how combined interpretation of multiple methods at a range of scales produces robust three-dimensional conceptual models and a stronger basis for interpreting groundwater and surface water monitoring data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An unusual application of hydrological understanding to a police search is described. The lacustrine search for a missing person provided reports of bottom-water currents in the lake and contradictory indications from cadaver dogs. A hydrological model of the area was developed using pre-existing information from side scan sonar, a desktop hydrogeological study and deployment of water penetrating radar (WPR). These provided a hydrological theory for the initial search involving subaqueous groundwater flow, focused on an area of bedrock surrounded by sediment, on the lake floor. The work shows the value a hydrological explanation has to a police search operation (equally to search and rescue). With hindsight, the desktop study should have preceded the search, allowing better understanding of water conditions. The ultimate reason for lacustrine flow in this location is still not proven, but the hydrological model explained the problems encountered in the initial search.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work presents the possibility of optimising 3D Organised Mesoporous Silica (OMS) coated with both iron and aluminium oxides for the optimal removal of As(III) and As(V) from synthetic contaminated water. The materials developed were fully characterised and were tested for removing arsenic in batch experiments. The effect of total Al to Fe oxides coating on the selective removal of As(III) and As(V) was studied. It was shown that 8% metal coating was the optimal configuration for the coated OMS materials in removing arsenic. The effect of arsenic initial concentration and pH, kinetics and diffusion mechanisms was studied, modelled and discussed. It was shown that the advantage of an organised material over an un-structured sorbent was very limited in terms of kinetic and diffusion under the experimental conditions. It was shown that physisorption was the main adsorption process involved in As removal by the coated OMS. Maximum adsorption capacity of 55 mg As(V).g-1 was noticed at pH 5 for material coated with 8% Al oxides while 35 mg As(V).g-1 was removed at pH 4 for equivalent material coated with Fe oxides.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Understanding the response of humid mid-latitude forests to changes in precipitation, temperature, nutrient cycling, and disturbance is critical to improving our predictive understanding of changes in the surface-subsurface energy balance due to climate change. Mechanistic understanding of the effects of long-term and transient moisture conditions are needed to quantify
linkages between changing redox conditions, microbial activity, and soil mineral and nutrient interactions on C cycling and greenhouse gas releases. To illuminate relationships between the soil chemistry, microbial communities and organic C we established transects across hydraulic and topographic gradients in a small watershed with transient moisture conditions. Valley bottoms tend to be more frequently saturated than ridge tops and side slopes which generally are only saturated when shallow storm flow zones are active. Fifty shallow (~36”) soil cores were collected during timeframes representative of low CO2, soil winter conditions and high CO2, soil summer conditions. Cores were subdivided into 240 samples based on pedology and analyses of the geochemical (moisture content, metals, pH, Fe species, N, C, CEC, AEC) and microbial (16S rRNA gene
amplification with Illumina MiSeq sequencing) characteristics were conducted and correlated to watershed terrain and hydrology. To associate microbial metabolic activity with greenhouse gas emissions we installed 17 soil gas probes, collected gas samples for 16 months and analyzed them for CO2 and other fixed and greenhouse gasses. Parallel to the experimental efforts our data is being used to support hydrobiogeochemical process modeling by coupling the Community Land Model (CLM) with a subsurface process model (PFLOTRAN) to simulate processes and interactions from the molecular to watershed scales. Including above ground processes (biogeophysics, hydrology, and vegetation dynamics), CLM provides mechanistic water, energy, and organic matter inputs to the surface/subsurface models, in which coupled biogeochemical reaction
networks are used to improve the representation of below-ground processes. Preliminary results suggest that inclusion of above ground processes from CLM greatly improves the prediction of moisture response and water cycle at the watershed scale.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In highly heterogeneous aquifer systems, conceptualization of regional groundwater flow models frequently results in the generalization or negligence of aquifer heterogeneities, both of which may result in erroneous model outputs. The calculation of equivalence related to hydrogeological parameters and applied to upscaling provides a means of accounting for measurement scale information but at regional scale. In this study, the Permo-Triassic Lagan Valley strategic aquifer in Northern Ireland is observed to be heterogeneous, if not discontinuous, due to subvertical trending low-permeability Tertiary dolerite dykes. Interpretation of ground and aerial magnetic surveys produces a deterministic solution to dyke locations. By measuring relative permeabilities of both the dykes and the sedimentary host rock, equivalent directional permeabilities, that determine anisotropy calculated as a function of dyke density, are obtained. This provides parameters for larger scale equivalent blocks, which can be directly imported to numerical groundwater flow models. Different conceptual models with different degrees of upscaling are numerically tested and results compared to regional flow observations. Simulation results show that the upscaled permeabilities from geophysical data allow one to properly account for the observed spatial variations of groundwater flow, without requiring artificial distribution of aquifer properties. It is also found that an intermediate degree of upscaling, between accounting for mapped field-scale dykes and accounting for one regional anisotropy value (maximum upscaling) provides results the closest to the observations at the regional scale.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The process of accounting for heterogeneity has made significant advances in statistical research, primarily in the framework of stochastic analysis and the development of multiple-point statistics (MPS). Among MPS techniques, the direct sampling (DS) method is tested to determine its ability to delineate heterogeneity from aerial magnetics data in a regional sandstone aquifer intruded by low-permeability volcanic dykes in Northern Ireland, UK. The use of two two-dimensional bivariate training images aids in creating spatial probability distributions of heterogeneities of hydrogeological interest, despite relatively ‘noisy’ magnetics data (i.e. including hydrogeologically irrelevant urban noise and regional geologic effects). These distributions are incorporated into a hierarchy system where previously published density function and upscaling methods are applied to derive regional distributions of equivalent hydraulic conductivity tensor K. Several K models, as determined by several stochastic realisations of MPS dyke locations, are computed within groundwater flow models and evaluated by comparing modelled heads with field observations. Results show a significant improvement in model calibration when compared to a simplistic homogeneous and isotropic aquifer model that does not account for the dyke occurrence evidenced by airborne magnetic data. The best model is obtained when normal and reverse polarity dykes are computed separately within MPS simulations and when a probability threshold of 0.7 is applied. The presented stochastic approach also provides improvement when compared to a previously published deterministic anisotropic model based on the unprocessed (i.e. noisy) airborne magnetics. This demonstrates the potential of coupling MPS to airborne geophysical data for regional groundwater modelling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fault and fracture systems are the most important store and pathway for groundwater in Ireland’s bedrock aquifers, either directly as conductive flow structures, or indirectly as the locus for the development of dolomitised limestone and karst. This article presents the preliminary results of a study involving the quantitative analysis of fault and fracture systems in the broad range of Irish bedrock types and a consideration of their impact on groundwater flow. The principal aims of the project are to develop generic conceptual models for different fault/fracture systems in different lithologies and at different depths, and to link them to observed groundwater behaviour. Here we briefly describe the geometrical characteristics of the main post-Devonian fault/fracture systems controlling groundwater flow from field observations at outcrops, quarries and mines. The structures range from Lower Carboniferous normal faults through to Variscan-related faults and veins, with the most recent structures including Tertiary strike-slip faults and ubiquitous uplift-related joint systems. The geometrical characteristics of different fault/fracture systems combined with observations of groundwater behaviour in both quarry and mine localities, can be linked to general flow and transport conceptualisations of Irish fractured bedrock. Most importantly they also provide a basis for relating groundwater flow to particular fault/fracture systems and their expression with depth and within different lithological sequences, as well as their regional variability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The optimisation of Fe and Al oxyhydroxide materials produced using industrial grade coagulants is presented in this work. The effects of synthesis pH and post-synthesis washing procedure onto the arsenic adsorption capacity of the materials were investigated. It was shown that the materials produced at higher pH were more efficient in removing As(V), especially after cleaning procedure. The materials produced at lower pH were less efficient in removing As(V) but the higher presence of sulphate groups in the materials produced at lower pH enhanced As(III) adsorption. Most performing materials can remove up to 84.7 mg As(V) g-1 or 77.9 mg As(III) g-1.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Identifying groundwater contributions to baseflowforms an essential part of surfacewater body characterisation. The Gortinlieve catchment (5 km2) comprises a headwater stream network of the Carrigans River, itself a tributary of the River Foyle, NW Ireland. The bedrock comprises poorly productive metasediments that are characterised by fracture porosity. We present the findings of a multi-disciplinary study that integrates new hydrochemical and mineralogical investigations with existing hydraulic, geophysical and structural data to identify the scales of groundwater flow and the nature of groundwater/bedrock interaction (chemical denudation). At the catchment scale, the development of deep weathering profiles is controlled by NE-SW regional scale fracture zones associated with mountain building during the Grampian orogeny. In-situ chemical denudation of mineral phases is controlled by micro- to meso-scale fractures related to Alpine compression during Palaeocene to Oligocene times. The alteration of primary muscovite, chlorite (clinochlore) and albite along the surfaces of these small-scale fractures has resulted in the precipitation of illite, montmorillonite and illite/montmorillonite clay admixtures. The interconnected but discontinuous nature of these small-scale structures highlights the role of larger scale faults and fissures in the supply and transportation of weathering solutions to/from the sites of mineral weathering. The dissolution of primarily mineral phases releases the major ions Mg, Ca and HCO3 that are shown to subsequently formthe chemical makeup of groundwaters. Borehole groundwater and stream baseflow hydrochemical data are used to constrain the depths of groundwater flow pathways influencing the chemistry of surface waters throughout the stream profile. The results show that it is predominantly the lower part of the catchment, which receives inputs from catchment/regional scale groundwater flow, that is found to contribute to the maintenance of annual baseflow levels. This study identifies the importance
of deep groundwater in maintaining annual baseflow levels in poorly productive bedrock systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hydrogeochemical relationships and the level of arsenic (As) contamination of groundwater in the Haor Basin, a low-lying, semi-natural, region of remnant wetland environs to the northeast of Bangladesh, were studied to assess the As biogeochemical cycling. Most of the shallow and deep tubewells in the study area are contaminated with As (2-331 mu g/l). The relatively higher proportions of Na+ (8-156 mg/l) in groundwater suggest a mixing of connate marine water with freshwater aquifer. Non-significant association between As and PO43- has been found. Highly significant (P <0.001) relationship of As with DOC in groundwater indicates biodegradation of organic matter, creating an overall reducing environment in the aquifer sediments, which facilitates the release of As in the groundwater. The inverse As-Fe, As-Mn, As-Ca and As-Mg relationships in groundwater could be related to the precipitation of Fe-, Mn-, Ca-and Mg-minerals.