220 resultados para Grew, Nehemiah, 1641-1712
Resumo:
1.How much should an individual invest in reproduction as it grows older? Answering this question involves determining whether individuals measure their age as the time left for future reproduction or as the rate of deterioration in their state. Theory suggests that in the former case individuals should increase their allocation of resources to reproduction as opportunities for future breeding dwindle, and terminally invest when they breed for the last time. In the latter case they should reduce their investment in reproduction with age, either through adaptive reproductive restraint or as a passive by-product of senescence.
2.Here we present the results of experiments on female burying beetles, Nicrophorus vespilloides, in which we independently manipulated the perceived risk of death (by activating the immune system) and the extent of deterioration in state (by changing age of first reproduction and/or prior investment in reproduction).
3.We found that the risk of death and state each independently influenced the extent of reproductive investment. Specifically, we found a state-dependent decline in reproductive investment as females grew older that could be attributed to both adaptive reproductive restraint and senescence. A perceived increase in the risk of death, induced by activation of the immune system, caused females to switch from a strategy of reproductive restraint to terminal investment. Nevertheless, absolute reproductive investment was lower in older females, indicating constraints of senescence.
4.Our results show that a decline in reproductive investment with age does not necessarily constitute evidence of reproductive senescence but can also result from adaptive reproductive restraint.
5.Our results further suggest that the extent of reproductive investment is dependent on several different intrinsic cues and that the particular blend of cues available at any given age can yield very different patterns of investment. Perhaps this explains why age-related reproductive investment patterns seen in nature are so diverse.
Resumo:
A central question in community ecology is how the number of trophic links relates to community species richness. For simple dynamical food-web models, link density (the ratio of links to species) is bounded from above as the number of species increases; but empirical data suggest that it increases without bounds. We found a new empirical upper bound on link density in large marine communities with emphasis on fish and squid, using novel methods that avoid known sources of bias in traditional approaches. Bounds are expressed in terms of the diet-partitioning function (DPF): the average number of resources contributing more than a fraction f to a consumer's diet, as a function of f. All observed DPF follow a functional form closely related to a power law, with power-law exponents indepen- dent of species richness at the measurement accuracy. Results imply universal upper bounds on link density across the oceans. However, the inherently scale-free nature of power-law diet partitioning suggests that the DPF itself is a better defined characterization of network structure than link density.
Resumo:
Durkheim’s idea that war reduces suicide through greater social and political integration has been used to explain suicide trends during the Northern Ireland conflict and in the period of peace. The applicability of Durkheim is critically evaluated through a case study of suicide trends by age, gender and cause of death over a forty year period. The key finding is that the cohort of children and young people who grew up in the worst years of violence during the 1970s, have the highest and most rapidly increasing suicide rates, and account for the steep upward trend in suicide following the 1998 Agreement. Contrary to Durkheim, the recent rise in suicide involves a complex of social and psychological factors. These include the growth in social isolation, poor mental health arising from the experience of conflict, and the greater political stability of the past decade. The transition to peace means that externalised aggression is no longer socially approved. It becomes internalised instead.
Resumo:
Studies of animal movement are rapidly increasing as tracking technologies make it possible to collect more data of a larger variety of species. Comparisons of animal movement across sites, times, or species are key to asking questions about animal adaptation, responses to climate and land-use change. Thus, great gains can be made by sharing and exchanging animal tracking data. Here we present an animal movement data model that we use within the Movebank web application to describe tracked animals. The model facilitates data comparisons across a broad range of taxa, study designs, and technologies, and is based on the scientific questions that could be addressed with the data.
Resumo:
OBJECTIVE: Gremlin (grem1) is an antagonist of the bone morphogenetic protein family that plays a key role in limb bud development and kidney formation. There is a growing appreciation that altered grem1 expression may regulate the homeostatic constraints on damage responses in diseases such as diabetic nephropathy. RESEARCH DESIGN AND METHODS: Here we explored whether knockout mice heterozygous for grem1 gene deletion (grem1(+/-)) exhibit protection from the progression of diabetic kidney disease in a streptozotocin-induced model of type 1 diabetes. RESULTS: A marked elevation in grem1 expression was detected in the kidneys and particularly in kidney tubules of diabetic wild-type mice compared with those of littermate controls. In contrast, diabetic grem1(+/-) mice displayed a significant attenuation in grem1 expression at 6 months of diabetes compared with that in age- and sex-matched wild-type controls. Whereas the onset and induction of diabetes were similar between grem1(+/-) and wild-type mice, several indicators of diabetes-associated kidney damage such as increased glomerular basement membrane thickening and microalbuminuria were attenuated in grem1(+/-) mice compared with those in wild-type controls. Markers of renal damage such as fibronectin and connective tissue growth factor were elevated in diabetic wild-type but not in grem1(+/-) kidneys. Levels of pSmad1/5/8 decreased in wild-type but not in grem1(+/-) diabetic kidneys, suggesting that bone morphogenetic protein signaling may be maintained in the absence of grem1. CONCLUSIONS: These data identify grem1 as a potential modifier of renal injury in the context of diabetic kidney disease.
Resumo:
Dynamic power consumption is very dependent on interconnect, so clever mapping of digital signal processing algorithms to parallelised realisations with data locality is vital. This is a particular problem for fast algorithm implementations where typically, designers will have sacrificed circuit structure for efficiency in software implementation. This study outlines an approach for reducing the dynamic power consumption of a class of fast algorithms by minimising the index space separation; this allows the generation of field programmable gate array (FPGA) implementations with reduced power consumption. It is shown how a 50% reduction in relative index space separation results in a measured power gain of 36 and 37% over a Cooley-Tukey Fast Fourier Transform (FFT)-based solution for both actual power measurements for a Xilinx Virtex-II FPGA implementation and circuit measurements for a Xilinx Virtex-5 implementation. The authors show the generality of the approach by applying it to a number of other fast algorithms namely the discrete cosine, the discrete Hartley and the Walsh-Hadamard transforms.
Resumo:
Workspace analysis and optimization are important in a manipulator design. As the complete workspace of a 6-DOF manipulator is embedded into a 6-imensional space, it is difficult to quantify and qualify it. Most literatures only considered the 3-D sub workspaces of the complete 6-D workspace. In this paper, a finite-partition approach of the Special Euclidean group SE(3) is proposed based on the topology properties of SE(3), which is the product of Special Orthogonal group SO(3) and R^3. It is known that the SO(3) is homeomorphic to a solid ball D^3 with antipodal points identified while the geometry of R^3 can be regarded as a cuboid. The complete 6-D workspace SE(3) is at the first time parametrically and proportionally partitioned into a number of elements with uniform convergence based on its geometry. As a result, a basis volume element of SE(3) is formed by the product of a basis volume element of R^3 and a basis volume element of SO(3), which is the product of a basis volume element of D^3 and its associated integration measure. By this way, the integration of the complete 6-D workspace volume becomes the simple summation of the basis volume elements of SE(3). Two new global performance indices, i.e., workspace volume ratio Wr and global condition index GCI, are defined over the complete 6-D workspace. A newly proposed 3 RPPS parallel manipulator is optimized based on this finite-partition approach. As a result, the optimal dimensions for maximal workspace are obtained, and the optimal performance points in the workspace are identified.
Resumo:
Mycobacterium avium subsp. paratuberculosis causes paratuberculosis (Johne's disease) in ruminants in most countries. Historical data suggest substantial differences in culturability of M. avium subsp. paratuberculosis isolates from small ruminants and cattle; however, a systematic comparison of culture media and isolates from different countries and hosts has not been undertaken. Here, 35 field isolates from the United States, Spain, Northern Ireland, and Australia were propagated in Bactec 12B medium and Middlebrook 7H10 agar, genomically characterized, and subcultured to Lowenstein-Jensen (LJ), Herrold's egg yolk (HEY), modified Middlebrook 7H10, Middlebrook 7H11, and Watson-Reid (WR) agars, all with and without mycobactin J and some with sodium pyruvate. Fourteen genotypes of M. avium subsp. paratuberculosis were represented as determined by BstEII IS900 and IS1311 restriction fragment length polymorphism analysis. There was no correlation between genotype and overall culturability, although most S strains tended to grow poorly on HEY agar. Pyruvate was inhibitory to some isolates. All strains grew on modified Middlebrook 7H10 agar but more slowly and less prolifically on LJ agar. Mycobactin J was required for growth on all media except 7H11 agar, but growth was improved by the addition of mycobactin J to 7H11 agar. WR agar supported the growth of few isolates. The differences in growth of M. avium subsp. paratuberculosis that have historically been reported in diverse settings have been strongly influenced by the type of culture medium used. When an optimal culture medium, such as modified Middlebrook 7H10 agar, is used, very little difference between the growth phenotypes of diverse strains of M. avium subsp. paratuberculosis was observed. This optimal medium is recommended to remove bias in the isolation and cultivation of M. avium subsp. paratuberculosis.
Resumo:
The use of accelerators, with compute architectures different and distinct from the CPU, has become a new research frontier in high-performance computing over the past ?ve years. This paper is a case study on how the instruction-level parallelism offered by three accelerator technologies, FPGA, GPU and ClearSpeed, can be exploited in atomic physics. The algorithm studied is the evaluation of two electron integrals, using direct numerical quadrature, a task that arises in the study of intermediate energy electron scattering by hydrogen atoms. The results of our ‘productivity’ study show that while each accelerator is viable, there are considerable differences in the implementation strategies that must be followed on each.
Resumo:
This paper describes the development of a novel metaheuristic that combines an electromagnetic-like mechanism (EM) and the great deluge algorithm (GD) for the University course timetabling problem. This well-known timetabling problem assigns lectures to specific numbers of timeslots and rooms maximizing the overall quality of the timetable while taking various constraints into account. EM is a population-based stochastic global optimization algorithm that is based on the theory of physics, simulating attraction and repulsion of sample points in moving toward optimality. GD is a local search procedure that allows worse solutions to be accepted based on some given upper boundary or ‘level’. In this paper, the dynamic force calculated from the attraction-repulsion mechanism is used as a decreasing rate to update the ‘level’ within the search process. The proposed method has been applied to a range of benchmark university course timetabling test problems from the literature. Moreover, the viability of the method has been tested by comparing its results with other reported results from the literature, demonstrating that the method is able to produce improved solutions to those currently published. We believe this is due to the combination of both approaches and the ability of the resultant algorithm to converge all solutions at every search process.
Resumo:
Voice over IP (VoIP) has experienced a tremendous growth over the last few years and is now widely used among the population and for business purposes. The security of such VoIP systems is often assumed, creating a false sense of privacy. This paper investigates in detail the leakage of information from Skype, a widely used and protected VoIP application. Experiments have shown that isolated phonemes can be classified and given sentences identified. By using the dynamic time warping (DTW) algorithm, frequently used in speech processing, an accuracy of 60% can be reached. The results can be further improved by choosing specific training data and reach an accuracy of 83% under specific conditions. The initial results being speaker dependent, an approach involving the Kalman filter is proposed to extract the kernel of all training signals.
Resumo:
This paper describes the application of an improved nonlinear principal component analysis (PCA) to the detection of faults in polymer extrusion processes. Since the processes are complex in nature and nonlinear relationships exist between the recorded variables, an improved nonlinear PCA, which incorporates the radial basis function (RBF) networks and principal curves, is proposed. This algorithm comprises two stages. The first stage involves the use of the serial principal curve to obtain the nonlinear scores and approximated data. The second stage is to construct two RBF networks using a fast recursive algorithm to solve the topology problem in traditional nonlinear PCA. The benefits of this improvement are demonstrated in the practical application to a polymer extrusion process.
Resumo:
Background Human respiratory syncytial virus (RSV) causes severe respiratory disease in infants. Airway epithelial cells are the principle targets of RSV infection. However, the mechanisms by which it causes disease are poorly understood. Most RSV pathogenesis data are derived using laboratory-adapted prototypic strains. We hypothesized that such strains may be poorly representative of recent clinical isolates in terms of virus/host interactions in primary human bronchial epithelial cells (PBECs). Methods To address this hypothesis, we isolated three RSV strains from infants hospitalized with bronchiolitis and compared them with the prototypic RSV A2 in terms of cytopathology, virus growth kinetics and chemokine secretion in infected PBEC monolayers. Results RSV A2 rapidly obliterated the PBECs, whereas the clinical isolates caused much less cytopathology. Concomitantly, RSV A2 also grew faster and to higher titers in PBECs. Furthermore, dramatically increased secretion of IP-10 and RANTES was evident following A2 infection compared with the clinical isolates. Conclusions The prototypic RSV strain A2 is poorly representative of recent clinical isolates in terms of cytopathogenicity, viral growth kinetics and pro-inflammatory responses induced following infection of PBEC monolayers. Thus, the choice of RSV strain may have important implications for future RSV pathogenesis studies.
Resumo:
A queue manager (QM) is a core traffic management (TM) function used to provide per-flow queuing in access andmetro networks; however current designs have limited scalability. An on-demand QM (OD-QM) which is part of a new modular field-programmable gate-array (FPGA)-based TM is presented that dynamically maps active flows to the available physical resources; its scalability is derived from exploiting the observation that there are only a few hundred active flows in a high speed network. Simulations with real traffic show that it is a scalable, cost-effective approach that enhances per-flow queuing performance, thereby allowing per-flow QM without the need for extra external memory at speeds up to 10 Gbps. It utilizes 2.3%–16.3% of a Xilinx XC5VSX50t FPGA and works at 111 MHz.