146 resultados para Graham Centre
Resumo:
We have begun a search for early-type stars towards the galactic centre which are potentially young objects situated within the inner few kiloparsecs of the disk. U and V (or I) band photographic photometry from the UK Schmidt Telescope has been obtained to identify the bluest candidates in nineteen Schmidt fields (centred close to the galactic centre). We have spectroscopically observed these targets for three fields with the FLAIR multi-fibre system to determine their spectral types. In particular; ten early B-type stars have been identified and equivalent width measurements of their Balmer and HeI lines have been used to estimate atmospheric parameters. These early-type objects have magnitudes in the range 11.5 less than or equal to V less than or equal to 16.0, and our best estimates of their distance (given probable highly variable reddening in this direction together with errors in the plate photometry) suggest that some of them originated close to (i.e R-g
Resumo:
Differential carbon abundances (based on the C II doublet at 6580 Angstrom) are presented for eight early type stars, towards the Galactic anti-centre. All the stars have similar atmospheric parameters with effective temperatures in the range 25000-29000 K and surface gravities between log g = 3.9-4.3 dex. The derived photospheric abundances vary by up to 0.6 dex, and with the exception of one star, RLWT-41, the differential abundances are found to be closely correlated with those of nitrogen. This implies that both elements may have been formed by similar mechanisms and that the lack of correlation between the nitrogen and oxygen abundances previously found in this sample is not directly due to CNO-processed core material being mixed to the stellar surface.
Resumo:
High resolution optical spectra of four blue supergiants (HD148422 B0.5 Ib; HD178487 B0.5 Ib; HD179407 B1 Ib, HD163522 B1 Ib) which lie within 4.5 kpc of the Galactic centre are presented. Careful differential LTE model atmosphere analyses are used to quantify the differences in photospheric metal abundances between these stars and MK spectral standards in the solar neighborhood. A detailed non-LTE model atmosphere analysis of one star (HD163522) confirms that the LTE differential abundances should be reliable, provided we use a comparison star with similar atmospheric parameters.
Resumo:
In a previous paper we have published observational data for 6 early B-type stars having, galactocentric distances of between 10 and 18 kpc. Using LTE line-blanketed model at mosphere techniques we derived their atmospheric parameters, finding that all our targets had similar effective temperatures and surface gravities. In the following study we additionally include two stars which have been presented previously (Rolleston et al. 1993) and found also to have compatible atmospheric parameters to the original programme stars. The homogeneity of this sample allows quantitative line-by-line differential abundance analyses to be carried out which should reliably detect variations in the chemical compositions of the stellar photospheres. We present differential abundances for eight stars, in either young open clusters or the field, with respect to an arbitrarily chosen standard which shows a normal abundance pattern. Our method of calculating distances from the derived atmospheric parameters means that the relative distance scale should be accurate.
Resumo:
High resolution spectra of six early B-type main-sequence stars having galactocentric distances of between 10 and 18 kpc are presented. We List the equivalent widths for the metal lines and illustrate their hydrogen and helium line profiles. The stars are analysed using LTE line-blanketed model atmosphere techniques to derive atmospheric parameters and surface chemical compositions. All six stars have similar effective temperatures and surface gravities, allowing a reliable comparison of their metal abundances and distances. Significant variations in the photospheric abundances are evident and are discuss the need for a more detailed line-by-line differential analysis to exactly quantify the differences. This will be presented in a companion paper (Smartt et al. 1996).
Resumo:
The requirement for the use of Virtual Engineering, encompassing the construction of Virtual Prototypes using Multidisciplinary Design Optimisation, for the development of future aerospace platforms and systems is discussed. Some of the activities at the Virtual Engineering Centre, a University of Liverpool initiative, are described and a number of case studies involving a range of applications of Virtual Engineering illustrated.