111 resultados para Ferroelectric
Resumo:
An attempt has been made to unequivocally identify the influence that inhomogeneous strain fields, surrounding point defects, have on the functional properties of thin film ferroelectrics. Single crystal thin film lamellae of BaTiO3 have been integrated into capacitor structures, and the functional differences between those annealed in oxygen and those annealed in nitrogen have been mapped. Key features, such as the change in the paraelectric-ferroelectric phase transition from first to second order were noted and found to be consistent with mean field modeling predictions for the effects of inhomogeneous strain. Switching characteristics appeared to be unaffected, suggesting that point defects have a low efficacy in domain wall pinning.
Resumo:
There are several factors which make the investigation and understanding of nanoscale ferroelectrics particularly timely and important. Firstly, there is a market pressure, primarily from the electronics industry, to integrate ferroelectrics into devices with progressive decreases in size and increases in morphological complexity. This is perhaps best illustrated through the roadmaps for product development in FeRAM (Ferroelectric Randorn Access Memory) where the need for increases in bit density will require a move from 2D planar capacitor structures to 3D trenched capacitors in the next few years. Secondly, there is opportunity for novel exploration, as it is only relatively recently that developments in thin film growth of complex oxides, self-assembly techniques and high-resolution 'top-down' patterning have converged to allow the fabrication of isolated and well-defined ferroelectric nanoshapes, the properties of which are not known. Thirdly, there is an expectation that the behaviour of small scale ferroelectrics will be different from bulk, as this group of functional materials is highly sensitive to boundary/surface conditions, which are expected to dominate the overall response when sizes are reduced into the nanoscale regime. This feature article attempts to introduce some of the current areas of discovery and debate surrounding studies on ferroelectrics at the nanoscale. The focus is directed primarily at the search for novel size-related properties and behaviour which are not necessarily observed in bulk.
Resumo:
Extremely regular self-organized patterns of 90o ferroelastic domains have been reported in freestanding single crystal thin films of ferroelectric BaTiO3. Lukyanchuk et al. [Phys Rev B 79, 144111 (2009)] have recently shown that the domain size as a function of thickness for such free standing films can be well described assuming that the domains are due to stress caused by a surface tension layer that does not undergo the paraelectric–ferroelectric transition. From the starting point of Lukyanchuk’s model, it is shown here that the ‘‘universal’’relationship between domain size and domain wall thickness previously observed in ferroelectrics, ferromagnets and multiferroics is also valid for ferroelastic domains.Further analysis of experimental data also shows that the domain wall thickness can vary considerably (an order of magnitude) from sample to sample even for the same material (BaTiO3), in spite of which the domain size scaling model is still valid, provided that the correct,sample dependent, domain wall thickness is used.
Resumo:
We perform a study of the energetics of KH2PO4 (KDP) by using a shell model (SM) which was constructed by adjusting the interaction parameters to ab initio calculations, and was fitted to reproduce phonons, polarization-inversion energies and structural properties. We calculate the energy profiles by performing global displacements and local distortions following the ferroelectric (FE) mode pattern in clusters of different sizes embedded in a paraelectric (PE) phase matrix. These properties are expected to be relevant to the PE-FE phase transition. The obtained SM results are compared to corresponding ab initio (AI) data. The global instabilities are found in good agreement for both KDP and DKDP. We also find qualitative good agreement in the KDP structure and even quantitative agreement in the expanded DKDP structure for the local distortions. The SM results reproduce well different trends like increasing instabilities as the cluster sizes grows, as the heavier atoms are included, and as the volume is increased, in accordance with the corresponding data from AI calculations.
Resumo:
The -phonons of KH2PO4 (KDP) and its deuterated analog DKDP are studied via first-principles linear response calculations. The paraelectric phase shows two instabilities. One for a z-polarized mode, which leads to the spontaneous polarization Ps of the ferroelectric phase. The other corresponds to a two-fold degenerate xy-polarized mode. Other phonons are analyzed, which couple to the ferroelectric one at large amplitudes and are relevant for the ferroelectric transition. We show that Ps is mainly of electronic nature, since it arises mostly from an off-diagonal component of the Born effective charge tensor of H, with minor contribution from P atoms displacements.
Resumo:
Over 60 years ago, Charles Kittel predicted that quadrant domains should spontaneously form in small ferromagnetic platelets. He expected that the direction of magnetization within each quadrant should lie parallel to the platelet surface, minimizing demagnetizing fields, and that magnetic moments should be configured into an overall closed loop, or flux-closure arrangement. Although now a ubiquitous observation in ferromagnets, obvious flux-closure patterns have been somewhat elusive in ferroelectric materials. This is despite the analogous behaviour between these two ferroic subgroups and the recent prediction of dipole closure states by atomistic simulations research. Here we show Piezoresponse Force Microscopy images of mesoscopic dipole closure patterns in free-standing, single-crystal lamellae of BaTiO3. Formation of these patterns is a dynamical process resulting from system relaxation after the BaTiO3 has been poled with a uniform electric field. The flux-closure states are composed of shape conserving 90° stripe domains which minimize disclination stresses.
Resumo:
Domain states in PbZr(0.42)Ti(0.58)O3 single-crystal ferroelectric nanodots, formed on cooling through the Curie temperature, were imaged by transmission electron microscopy. In the majority of cases, 90o stripe domains were found to form into four distinct “bundles” or quadrants. Detailed analysis of the dipole orientations in the system was undertaken, using both dark-field imaging and an assumption that charged domain walls were energetically unfavorable in comparison to uncharged walls. On this basis, we conclude that the dipoles in these nanodots are arranged such that the resultant polarizations, associated with the four quadrant domain bundles, form into a closed loop. This “polarization closure” pattern is reminiscent of the flux-closure already commonly observed in soft ferromagnetic microdots but to date unseen in analogous ferroelectric dots.
Resumo:
As part of an ongoing programme to evaluate the extent to which external morphology alters domain wall mobility in ferroelectrics, the electrical switching characteristics of single-crystal BaTiO3 nanorods and thin film plates have been measured and compared. It was found that ferroelectric nanorods were more readily switched than thin plates; increasing the shape constraint therefore appears to enhance switchability. This observation is broadly consistent with previous work, in which local notches patterned along the length of nanorods enhanced switching (McMillen et al 2010 Appl. Phys. Lett. 96 042904), while antinotches had the opposite effect (McQuaid et al 2010 Nano Lett. 10 3566). In this prior work, local enhancement and denudation of the electric field was expected at the notch and antinotch sites, respectively, and this was thought to be the reason for the differences in switching behaviour observed. However, for the simple nanorods and plates investigated here, no differences in the electric field distributions are expected. To rationalise the functional measurements, domain development during switching was imaged directly by piezoresponse force microscopy. A two-stage process was identified, in which narrow needle-like reverse domains initially form across the entire interelectrode gap and then subsequently coarsen through domain wall propagation perpendicular to the applied electric field. To be consistent with the electrical switching data, we suggest that the initial formation of needle domains occurs more readily in the nanorods than in the plates.
Resumo:
The manner in which 90? ferroelectric-ferroelastic domains respond to changes in temperature has been mapped in BaTiO3 single crystals using atomic force microscopy. Domain periodicity remains unaltered until approximately 2 ? C below the Curie temperature (TC ), whereupon domains coarsened dramatically. This behavior was successfully rationalized by considering the temperature dependence of the parameters associated with standard models of ferroelastic domain formation. However, while successful in describing the expected radical increase in equilibrium period with temperature, the model did not predict the unusual mechanism by which domain coarsening occurred; this was not continuous at a local level but instead involved discrete domain annihilation events. Subsequent insights from a combination of free energy analysis for the system and further experimental data from an analogous situation, in which domain period increases with increasing crystal thickness, suggested that domain annihilation is inevitable whenever a component of the relevant gradient that affects domain period is orientated parallel to the domain walls. Consistent with this thesis, we note that, for the observations presented herein, the thermal gradient possessed a significant component parallel to the domain walls. We suggest that domain annihilation is a general feature of domain structures in gradient fields.
Resumo:
Domain patterns consisting of triangular nanodomains of less than 50 nm size, arranged into long regular vertex arrays separated by stripe domains, were observed by (scanning and high-resolution) transmission electron microscopy and piezoresponse force microscopy in BiFeO3 single crystals grown from solution flux. Piezoresponse force microscopy analysis together with crystallographic analysis by selected area and nanobeam electron diffraction indicate that these patterns consist of ferroelectric 109 degrees domains. A possibility for conserving Kittel's law is discussed in terms of the patterns being confined to the skin layer observed recently on BiFeO3 single crystals.
Resumo:
Naturally occurring boundaries between bundles of 90° stripe domains, which form in BaTiO3 lamellae on cooling through the Curie Temperature, have been characterized using both piezoresponse force microscopy (PFM) and scanning transmission electron microscopy (STEM). Detailed interpretation of the dipole configurations present at these boundaries (using data taken from PFM) shows that in the vast majority of cases they are composed of simple zigzag 180° domain walls. Topological information from STEM shows that occasionally domain bundle boundaries can support chains of dipole flux closure and quadrupole nanostructures, but these kinds of boundaries are comparatively rare; when such chains do exist, it is notable that singularities at the cores of the dipole
structures are avoided. The symmetry of the boundary shows that diads and centers of inversion exist at positions where core singularities should have been expected.
Resumo:
We describe extensive studies on a family of perovskite oxides that are ferroelectric and ferromagnetic at ambient temperatures. The data include x-ray diffraction, Raman spectroscopy, measurements of ferroelectric and magnetic hysteresis, dielectric constants, Curie temperatures, electron microscopy
(both scanning electron microscope and transmission electron microscopy (TEM)) studies, and both longitudinal and transverse magnetoelectric constants a33 and a31. The study extends earlier work to lower Fe, Ta, and Nb concentrations at the B-site (from 15%–20% down to 5%). The magnetoelectric
constants increase supralinearly with Fe concentrations, supporting the earlier conclusions of a key role for Fe spin clustering. The room-temperature orthorhombic C2v point group symmetry inferred from earlier x-ray diffraction studies is confirmed via TEM, and the primitive unit cell size is found to be the basic perovskite Z¼1 structure of BaTiO3, also the sequence of phase transitions with increasing temperature from rhombohedral to orthorhombic to tetragonal to cubic mimics barium titanate.
Resumo:
Multiferroicity can be induced in strontium titanate by applying biaxial strain. Using optical second harmonic generation, we report a transition from 4/mmm to the ferroelectric mm2 phase, followed by a transition to a ferroelastic-ferroelectric mm2 phase in a strontium titanate thin film. Piezoelectric force microscopy is used to study ferroelectric domain switching. Second harmonic generation, combined with phase-field modeling, is used to reveal the mechanism of coupled ferroelectric-ferroelastic domain wall motion. These studies have relevance to multiferroics with coupled polar and axial phenomena.
Resumo:
Biaxial strain is known to induce ferroelectricity in thin films of nominally nonferroelectric materials such as SrTiO3. By a direct comparison of the strained and strain-free SrTiO3 films using dielectric, ferroelectric, Raman, nonlinear optical and nanoscale piezoelectric property measurements, we conclude that all SrTiO3 films and bulk crystals are relaxor ferroelectrics, and the role of strain is to stabilize longerrange correlation of preexisting nanopolar regions, likely originating from minute amounts of unintentional Sr deficiency in nominally stoichiometric samples. These findings highlight the sensitive role of stoichiometry when exploring strain and epitaxy-induced electronic phenomena in oxide films, heterostructures, and interfaces.
Resumo:
Nanoscale electromechanical activity, remanent polarization states, and hysteresis loops in paraelectric TiO2 and SrTiO3 thin films are observed using scanning probe microscopy. The coupling between the ionic dynamics and incipient ferroelectricity in these materials is analyzed using extended Landau-Ginzburg-Devonshire (LGD) theory. The possible origins of electromechanical coupling including ionic dynamics, surface-charge induced electrostriction, and ionically induced ferroelectricity are identified. For the latter, the ionic contribution can change the sign of first order LGD expansion coefficient, rendering material effectively ferroelectric. The lifetime of these ionically induced ferroelectric states is then controlled by the transport time of the mobile ionic species and well above that of polarization switching. These studies provide possible explanation for ferroelectric-like behavior in centrosymmetric transition metal oxides.