100 resultados para Extremely low-brith-weight-infants
Resumo:
There is an urgent need to replace the injection currently used for low molecular weight heparin (LMWH) multidose therapy with a non- or minimally invasive delivery approach. In this study, laser-engineered dissolving microneedle (DMN) arrays fabricated from aqueous blends of 15% w/w poly(methylvinylether-co-maleic anhydride) were used for the first time in active transdermal delivery of the LMWH nadroparin calcium (NC). Importantly, an array loading of 630 IU of NC was achieved without compromising the array mechanical strength or drug bioactivity. Application of NC-DMNs to dermatomed human skin (DHS) using the single-step 'poke and release' approach allowed permeation of approximately 10.6% of the total NC load over a 48-h study period. The cumulative amount of NC that permeated DHS at 24 h and 48 h attained 12.28 ± 4.23 IU/cm and 164.84 ± 8.47 IU/cm , respectively. Skin permeation of NC could be modulated by controlling the DMN array variables, such as MN length and array density as well as application force to meet various clinical requirements including adjustment for body mass and renal function. NC-loaded DMN offers great potential as a relatively low-cost functional delivery system for enhanced transdermal delivery of LMWH and other macromolecules. © 2012 Elsevier B.V. All rights reserved.
Resumo:
Cortisol levels were compared in children born preterm at extremely low gestational age (ELGA; 24-28 weeks), very low gestational age (VGLA; 29-32 weeks), and full-term in response to cognitive assessment at 18 months corrected age (CA). Further, we investigated the relationship between maternal interactive behaviors and child internalizing behaviors (rated by the mother) in relation to child cortisol levels. EGLA children had higher "pretest" cortisol levels and a different pattern of cortisol response to cognitive assessment compared to VGLA and full-terms. Higher cortisol levels in ELGA, but not full-term, children were associated with less optimal mother interactive behavior. Moreover, the pattern of cortisol change was related to internalizing behaviors among ELGA, and to a lesser degree VLGA children. In conclusion, our findings suggest altered programming of the hypothalamic-pituitary-adrenal (HPA) axis in preterm children, as well as their greater sensitivity to environmental context such as maternal interactive behavior.
Resumo:
Snake venom constitutes one of the most complex mixtures of naturally-occurring toxic proteins/polypeptides and a large number of these possess very profound biological activities. Disintegrins, that are commonly found in viper venoms, are low molecular weight proteins that usually contain an -Arg-Gly-Asp- (-RGD-) motif that is known to be involved in cell adhesion ligand recognition, binding specifically to cell surface integrin receptors and also exhibiting platelet anti-aggregation activity.
Here, we report for the first time, the successful cloning of three cDNAs encoding disintegrin precursors from lyophilised venom-derived libraries of Atheris chlorechis, Atheris nitschei and Atheris squamigera, respectively. All of these disintegrins belong to the short-coding class and all exhibit high degrees of structural identity, both in their amino acid sequences and in the arrangement of their functional domains. Mass spectrometric analyses of the HPLC-separated/in-gel digested venom proteins was performed to characterise the mature disintegrins as expressed in the venom proteome. Studies on both the structures and conserved sites within these disintegrins are of considerable theoretical interest in the field of biological evolution and in the development of new research tools or novel templates for drug design.
Resumo:
The overall antibiotic resistance of a bacterial population results from the combination of a wide range of susceptibilities displayed by subsets of bacterial cells. Bacterial heteroresistance to antibiotics has been documented for several opportunistic Gram-negative bacteria, but the mechanism of heteroresistance is unclear. We use Burkholderia cenocepacia as a model opportunistic bacterium to investigate the implications of heterogeneity in the response to the antimicrobial peptide polymyxin B (PmB) and also other bactericidal antibiotics. Here, we report that B. cenocepacia is heteroresistant to PmB. Population analysis profiling also identified B. cenocepacia subpopulations arising from a seemingly homogenous culture that are resistant to higher levels of polymyxin B than the rest of the cells in the culture, and can protect the more sensitive cells from killing, as well as sensitive bacteria from other species, such as Pseudomonas aeruginosa and Escherichia coli. Communication of resistance depended on upregulation of putrescine synthesis and YceI, a widely conserved low-molecular weight secreted protein. Deletion of genes for the synthesis of putrescine and YceI abrogate protection, while pharmacologic inhibition of putrescine synthesis reduced resistance to polymyxin B. Polyamines and YceI were also required for heteroresistance of B. cenocepacia to various bactericidal antibiotics. We propose that putrescine and YceI resemble "danger" infochemicals whose increased production by a bacterial subpopulation, becoming more resistant to bactericidal antibiotics, communicates higher level of resistance to more sensitive members of the population of the same or different species.
Resumo:
A facile and user-friendly protocol has been developed for the selective synthesis of E-vinyl silanes derived from propargylic alcohols using a PtCl2/XPhos catalyst system. The reaction is generally high yielding and provides a single regioisomer at the ß-position with E-alkene geometry. The reaction is extremely tolerant of functionality and has a wide scope of reactivity both in terms of alkynes and silanes used. The catalyst loading has been investigated and it is found that good reactivity is observed at extremely low catalyst loadings. This methodology has also been extended to a one-pot hydrosilylation Denmark–Hiyama coupling.
Resumo:
It has recently been proposed that the combination of skin barrier impairment using microneedles (MNs) coupled with iontophoresis (ITP) may broaden the range of drugs suitable for transdermal delivery as well as enabling the rate of delivery to be achieved with precise electronic control. However, few reports exist on the combination of ITP with in situ drug-loaded polymeric MN delivery systems. Our in vitro permeation studies revealed that MN enhances transdermal drug delivery. The combination of dissolving MN and ITP did not further enhance the extent of delivery of the low molecular weight drug ibuprofen sodium after short application periods. However, the extent of peptide/protein delivery was significantly enhanced when ITP was used in combination with hydrogel-forming MN arrays. As such, hydrogel-forming MN arrays show promise for the electrically controlled transdermal delivery of biomacromolecules in a simple, one-step approach, though further technical developments will be necessary before patient benefit is realized.
Resumo:
Pressure-sensitive adhesives (PSAs) have applications in the fields of packaging, joining, wound care, and personal care. Depending on the application of the PSA, different performance tests are carried out when new products are developed or the quality of the existing products is checked. Tack is the property of an adhesive that enables it to form instant bond on the surface under light pressure. The tack of a PSA strongly depends on the way the bond is created. Parameters such as the bonded area, contact time and the nature of tack materials all affect the tack force measured. In the development of any PSA, it is desirable to correlate the performance related properties such as tack and peel strength to the rheological behaviour. Finding these correlations would make it possible to evaluate the performance of a PSA using its rheological characteristics. In this investigation we have studied the influence of rheological behaviour of three different PSAs on their tackiness. The three different PSAs used in this study are a low molecular weight rosin ester, high molecular weight rosin ester, and dicyclopentadiene. Various rheological properties such as viscosity, phase angle, and elastic and viscous moduli are measured versus the frequency and temperature. Also the tack properties at various removal speeds and temperatures are evaluated. Analysis of the results indicates different performances of the three PSAs which could be related to their rheological properties, especially the phase angle, at different frequencies and temperatures. The PSA with high molecular weight rosin ester is more sensitive to temperature changes and showed drastic changes in tackiness from high temperature to low temperature. On the other hand, rosin ester with low molecular weight is less sensitive to temperature changes. © 2010 VSP.
Resumo:
The Ziegler Reservoir fossil site near Snowmass Village, Colorado, provides a unique opportunity to reconstruct high-altitude paleoenvironmental conditions in the Rocky Mountains during the last interglacial period. We used four different techniques to establish a chronological framework for the site. Radiocarbon dating of lake organics, bone collagen, and shell carbonate, and in situ cosmogenic Be and Al ages on a boulder on the crest of a moraine that impounded the lake suggest that the ages of the sediments that hosted the fossils are between ~ 140 ka and > 45 ka. Uranium-series ages of vertebrate remains generally fall within these bounds, but extremely low uranium concentrations and evidence of open-system behavior limit their utility. Optically stimulated luminescence (OSL) ages (n = 18) obtained from fine-grained quartz maintain stratigraphic order, were replicable, and provide reliable ages for the lake sediments. Analysis of the equivalent dose (D) dispersion of the OSL samples showed that the sediments were fully bleached prior to deposition and low scatter suggests that eolian processes were likely the dominant transport mechanism for fine-grained sediments into the lake. The resulting ages show that the fossil-bearing sediments span the latest part of marine isotope stage (MIS) 6, all of MIS 5 and MIS 4, and the earliest part of MIS 3.
Resumo:
Burkholderia cenocepacia infects patients with cystic fibrosis. We have previously shown that B. cenocepacia can survive in macrophages within membrane vacuoles (BcCVs) that preclude fusion with the lysosome. The bacterial factors involved in B. cenocepacia intracellular survival are not fully elucidated. We report here that deletion of BCAM0628, encoding a predicted low-molecular weight protein tyrosine phosphatase (LMW-PTP) that is restricted to B. cenocepacia strains of the transmissible ET-12 clone, accelerates the maturation of the BcCVs. Compared to parental strain and deletion mutants in other LMW-PTPs that are widely conserved in Burkholderia species, a greater proportion of BcCVs containing the BCAM0628 mutant were targeted to the lysosome. Accelerated BcCV maturation was not due to reduced intracellular viability since BCAM0628 survived and replicated in macrophages similarly to the parental strain. Therefore, BCAM0628 was referred to as dpm (delayed phagosome maturation). We provide evidence that the Dpm protein is secreted during growth in vitro and upon macrophage infection. Dpm secretion requires an N-terminal signal peptide. Heterologous expression of Dpm in B. multivorans confers to this bacterium a similar phagosomal maturation delay as found with B. cenocepacia. We demonstrate that Dpm is an inactive phosphatase, suggesting that its contribution to phagosomal maturation arrest must be unrelated to tyrosine phosphatase activity.
Resumo:
Large areas of perfectly ordered magnetic CoFe2O4 nanopillars embedded in a ferroelectric BiFeO3 matrix were successfully fabricated via a novel nucleation-induced self-assembly process. The nucleation centers of the magnetic pillars are induced before the growth of the composite structure using anodic aluminum oxide (AAO) and lithography-defined gold membranes as hard mask. High structural quality and good functional properties were obtained. Magneto-capacitance data revealed extremely low losses and magneto-electric coupling of about 0.9 mu C/cmOe. The present fabrication process might be relevant for inducing ordering in systems based on phase separation, as the nucleation and growth is a rather general feature of these systems.
Resumo:
Anorexia nervosa (AN) is a complex and heritable eating disorder characterized by dangerously low body weight. Neither candidate gene studies nor an initial genome-wide association study (GWAS) have yielded significant and replicated results. We performed a GWAS in 2907 cases with AN from 14 countries (15 sites) and 14 860 ancestrally matched controls as part of the Genetic Consortium for AN (GCAN) and the Wellcome Trust Case Control Consortium 3 (WTCCC3). Individual association analyses were conducted in each stratum and meta-analyzed across all 15 discovery data sets. Seventy-six (72 independent) single nucleotide polymorphisms were taken forward for in silico (two data sets) or de novo (13 data sets) replication genotyping in 2677 independent AN cases and 8629 European ancestry controls along with 458 AN cases and 421 controls from Japan. The final global meta-analysis across discovery and replication data sets comprised 5551 AN cases and 21 080 controls. AN subtype analyses (1606 AN restricting; 1445 AN binge-purge) were performed. No findings reached genome-wide significance. Two intronic variants were suggestively associated: rs9839776 (P=3.01 × 10(-7)) in SOX2OT and rs17030795 (P=5.84 × 10(-6)) in PPP3CA. Two additional signals were specific to Europeans: rs1523921 (P=5.76 × 10(-)(6)) between CUL3 and FAM124B and rs1886797 (P=8.05 × 10(-)(6)) near SPATA13. Comparing discovery with replication results, 76% of the effects were in the same direction, an observation highly unlikely to be due to chance (P=4 × 10(-6)), strongly suggesting that true findings exist but our sample, the largest yet reported, was underpowered for their detection. The accrual of large genotyped AN case-control samples should be an immediate priority for the field.
Resumo:
A procedure was developed to extract polyols and trehalose (protectants against stress) from fungal conidia. Conidia were sonicated (120 s) and immersed in a boiling water bath (5.5 min) to optimize extraction of polyols and trehalose, respectively. A rapid method was developed to separate and detect low-molecular-weight polyols and trehalose using high-performance liquid chromatography (HPLC). An ion exchange column designed for standard carbohydrate analysis was used in preference to one designed for sugar alcohol separation. This resulted in rapid elution (less than 5 min), without sacrificing peak resolution. The use of a pulsed electrochemical detector (gold electrode) resulted in limits of reliable quantification as low as 1.6 μg ml-1 for polyols and 2.8 μg ml-1 for trehalose. This is very sensitive and rapid method by which these protectants can be analysed. It avoids polyol derivatization that characterizes analysis by gas chromatography and the long run times (up to 45 min) that typify HPLC analysis using sugar alcohol columns.
Resumo:
Dehydration of the airway surface liquid (ASL) and the resultant decline in function of the mucociliary escalator in cystic fibrosis airways is largely underpinned by the excessive flux of Na+ and water though ENaC. Proteolysis of the endogenous and subunits of epithelial sodium channels (ENaC) by channel activating proteases (CAPS) is the key regulatory mechanism for channel activation. Recent reports highlight that (1) CFTR (cystic fibrosis transmembrane conductance regulator) normally protects ENaC from the action of proteases and (2) a stark imbalance in proteases/protease inhibitor levels in CF airway cultures favour activation of normally inactive ENaC. The current study examines the potential therapeutic benefit of CAPS/ENaC inhibition in CF airways.
Our group has developed a panel of active-site directed affinity-based probes which target and inhibit trypsin-like proteases (potential CAPS); including the broad-spectrum inhibitor QUB-TL1. We have utilised this compound to interrogate the impact of trypsin-like protease inhibition on ENaC activity in differentiated primary airway epithelial cell cultures.
Electrophysiological data demonstrate QUB-TL1 selectively and irreversibly binds to extracellularly located trypsin-like proteases resulting in impaired ENaC-mediated Na+ transport. Visualisation of ENaC at the apical surface compartment of primary airway epithelial cells shows a large reduction in a low molecular weight (processed and active) form of ENaC, which was found to be abundant in untreated CF cultures. Consistent with the reduction in ENaC activity observed, QUB-TL1 treatment was subsequently shown to increase ASL height (performed in collaboration with Royal College of Surgeons in Ireland).
Our results are consistent with the hypothesis that targeting the CAPS-ENaC signalling axis may restore the depleted ASL seen in CF airways.
Resumo:
Despite its wide implications for many ecological issues, the global pattern of spatial turnover in the occurrence of species has been little studied, unlike the global pattern of species richness. Here, using a database on the breeding distributions of birds, we present the first global maps of variation in spatial turnover for an entire taxonomic class, a pattern that has to date remained largely a matter of conjecture, based on theoretical expectations and extrapolation of inconsistent patterns from different biogeographic realms. We use these maps to test four predictions from niche theory as to the form that this variation should take, namely that turnover should increase with species richness, towards lower latitudes, and with the steepness of environmental gradients and that variation in turnover is determined principally by rare (restricted) species. Contrary to prediction, we show that turnover is high both in areas of extremely low and high species richness, does not increase strongly towards the tropics, and is related both to average environmental conditions and spatial variation in those conditions. These results are closely associated with a further important and novel finding, namely that global patterns of spatial turnover are driven principally by widespread species rather than the restricted ones. This complements recent demonstrations that spatial patterns of species richness are also driven principally by widespread species, and thus provides an important contribution towards a unified model of how terrestrial biodiversity varies both within and between the Earth's major land masses.
Resumo:
Genetic analysis on populations of European ash (Fraxinus excelsior) throughout Ireland was carried out to determine the levels and patterns of genetic diversity in naturally seeded trees in ash woodlands and hedgerows, with the aim of informing conservation and replanting strategies in the face of potential loss of trees as a result of ash dieback. Samples from 33 sites across Northern Ireland and three sites in the Republic of Ireland were genotyped for eight nuclear and ten chloroplast microsatellites. Levels of diversity were high (mean A R = 10.53; mean H O = 0.709; mean H E = 0.765) and were similar to those in Great Britain and continental Europe, whilst levels of population genetic differentiation based on nuclear microsatellites were extremely low (Φ ST = 0.0131). Levels of inbreeding (mean F IS = 0.067) were significantly lower than those reported for populations from Great Britain. Fine-scale analysis of seed dispersal indicated potential for dispersal over hundreds of metres. Our results suggest that ash woodlands across Ireland could be treated as a single management unit, and thus native material from anywhere in Ireland could be used as a source for replanting. In addition, high potential for dispersal has implications for recolonization processes post-ash dieback (Chalara fraxinea) infection, and could aid in our assessment of the capacity of ash to shift its range in response to global climate change.