103 resultados para ELECTROLUMINESCENT POLYMERS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mixtures of two cleavable dimethacrylate crosslinkers, the hydrolyzable di(methacryloyloxy-1-ethoxy)methane (DMOEM) and the thermolyzable 1,1-ethylene-diol dimethacrylate (EDDMA), were used for the preparation of neat crosslinker polymer networks, randomly crosslinked polymer networks of methyl methacrylate (MMA), and star polymers of MMA, using group transfer polymerization in tetrahydrofuran (THF). All star polymers and randomly crosslinked polymer networks containing mixtures of the hydrolyzable DMOEM and the thermolyzable EDDMA crosslinkers gave THF-soluble final products when subjected to sequential thermolysis and hydrolysis, in this order. When applying sequential hydrolysis and thermolysis, only the star polymers with an EDDMA crosslinker content equal to or higher than 50% gave THF-soluble final products.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A hydrolyzable model network comprising interconnected star polymers was prepared by the sequential group transfer polymerization of methyl methacrylate and the acid-labile diacetal-based dimethacrylate crosslinker bis[(2-methacryloyloxy)ethoxymethyl] ether. in contrast to other polymer networks previously synthesized by our group, all the branching points of this polymer network were found to hydrolyze under mildly acidic conditions, giving a linear copolymer with the theoretically expected molecular weight and composition. The ease of hydrolysis of this polymer network renders it a good candidate for use in the biomedical field. The characterization of the synthesized network, its linear and star polymer precursors and the hydrolysis products of the network and its precursors, by a variety of techniques, established the successful synthesis and hydrolysis of this well-defined polymer nanostructure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A compact, cleavable acylal dimethacrylate cross-linker, 1,1-ethylenediol dimethacrylate (EDDMA), was synthesized from the anhydrous iron(III) chloride-catalyzed reaction between methacrylic anhydride and acetaldehyde. The ability of EDDMA to act as cross-linker was demonstrated by using it for the preparation of one neat cross-linker network, four star polymers of methyl methacrylate (MMA), and four randomly cross-linked MMA polymer networks using group transfer polymerization (GTP). For comparison, the corresponding polymer structures based on the commercially available ethylene glycol dimethacrylate (EGDMA) cross-linker (isomer of EDDMA) were also prepared via GTR The number of arms of the EDDMA-based star polymers was lower than that of the corresponding EGDMA polymers, whereas the degrees of swelling in tetrahydrofuran of the EDDMA-based MMA networks were higher than those of their EGDMA-based counterparts. Although none of the EDDMA-containing polymers could be cleanly hydrolyzed under basic or acidic conditions, they could be thermolyzed at 200 degrees C within 1 day giving lower molecular weight products.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A hydrolyzable dimethacrylate cross-linker, 2-methyl-2,4-pentanediol dimethacrylate (MPDMA), was synhesized by the reaction of 2-methyl-2,4-pentanediol and methacryloyl chloride in the presence of triethylamine. This cross-linker was used to prepare a neat cross-linker network and three cross-linked star polymer model networks (CSPMNs) of methyl methacrylate (MMA), as well as star-shaped polymers of MMA, by group transfer polymerization (GTP). Gel permeation chromatography (GPC) in tetrahydrofuran (THF) confirmed the narrow molecular weight distributions (MWDs) of the linear polymer precursors, and demonstrated the increase in molecular weight (MW) on each successive addition of cross-linker or monomer. Characterization of the star polymers by static light scattering (SLS) in THF showed that star polymers with MPDMA cores bear a relatively small number of arms, between 7 and 35. All star polymers and polymer networks containing the MPDMA cross-linker were hydrolyzed at room temperature in neat trifluoroacetic acid to yield lower-MW products.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An acid-labile dimethaerylate acetal cross-linker,di(methacryloyloxy-l-ethoxy)methane(DMOEM), was synthesized by the reaction of 2-hydroxyethyl methacrylate and paraformaldehyde using p-toluenesulfonic acid and toluene as catalyst and solvent, respectively. Group transfer polymerization was employed to use this cross-linker in the preparation of nine hydrolyzable polymer structures: one neat cross-linker network, one randomly cross-linked network of methyl methacrylate (MMA), and seven star-shaped polymers of MMA. Gel permeation chromatography (GPC) in tetrahydrofuran (THF) confirmed the narrow molecular weight distributions of the linear polymer precursors to the stars and demonstrated the increase in molecular weight upon the addition of cross-linker for the formation of star-shaped polymers. Characterization of the star polymers in THF using static light scattering and GPC showed that the molecular weights and the number of arms of each star polymer increased with an increase in the molar ratio of cross-linker to initiator and with a decrease in the molar ratio of monomer to initiator. The star polymers with DMOEM cores bore a smaller number of arms than those cross-linked with the non-hydrolyzable commercial cross-linker ethylene glycol dimethacrylate due to the bulkier structure of DMOEM. All DMOEM-containing polymer networks and star polymers were completely hydrolyzed within 48 h using hydrochloric acid in THF.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An acid-labile dimethacrylate cross-linker, dimethyldi(methacryloyloxy-l-ethoxy)silane (DMDMAES), was synthesized by the reaction of 2-hydroxyethyl methacrylate (HEMA) and dichlorodimethylsilane in the presence of triethylamine. Group transfer polymerization (GTP) was employed to use this cross-linker in the preparation of six hydrolyzable polymer structures: one neat cross-linker network, one randomly cross-linked network of methyl methacrylate (MMA), two star-shaped polymers of MMA, and two cross-linked star polymer model networks (CSPMNs) of MMA. A nonhydrolyzable CSPMN of MMA, based on a stable cross-linker, was also synthesized. Gel permeation chromatography (GPC) in tetrahydrofuran (THF) confirmed the narrow molecular weight distributions (MWDs) of the linear polymer precursors and demonstrated the increase in molecular weight (MW) upon each successive addition of cross-linker or monomer. Characterization by static light scattering (SLS) and GPC showed that star polymers with DMDMAES cores bear a relatively small number of arms, around 7. All star polymers and polymer networks were hydrolyzed using hydrochloric acid in THF. While the MWs of the products from the hydrolysis of the star polymers, the neat cross-linker network, and the randomly cross-linked network were as expected, those from the CSPMNs were of a much higher than expected MW, indicating extensive star-star coupling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The cooling process in conventional rotomolding is relatively long due to poor thermal conductivity of plastics. The lack of internal cooling is a major limitation although rapid external cooling is possible. Various internal cooling methodologies have been studied to reduce the cycle time. These include the use of compressed air, cryogenic liquid nitrogen, chilled water coils, and cryogenic liquid carbon dioxide, all of which have limitations. However, this article demonstrates the use of water spray cooling of polymers as a viable and effective method for internal cooling in rotomolding. To this end, hydraulic, pneumatic, and ultrasonic nozzles were applied and evaluated using a specially constructed test rig to assess their efficiency. The effects of nozzle type and different parametric settings on water droplet size, velocity, and mass flow rate were analyzed and their influence on cooling rate, surface quality, and morphology of polymer exposed to spray cooling were characterized. The pneumatic nozzle provided highest average cooling rate while the hydraulic nozzle gave lowest average cooling rate. The ultrasonic nozzle with medium droplet size traveling at low velocity produced satisfactory surface finish. Water spray cooling produced smaller spherulites compared to ambient cooling whilst increasing the cooling rate decreases the percentage crystallinity. © 2011 Society of Plastics Engineers Copyright © 2011 Society of Plastics Engineers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hospital-acquired infections pose both a major risk to patient wellbeing and an economic burden on global healthcare systems, with the problem compounded by the emergence of multidrug resistant and biocide tolerant bacterial pathogens. Many inanimate surfaces can act as a reservoir for infection, and adequate disinfection is difficult to achieve and requires direct intervention. In this study we demonstrate the preparation and performance of materials with inherent photodynamic, surface-active, persistent antimicrobial properties through the incorporation of photosensitizers into high density poly(ethylene) (HDPE) using hot-melt extrusion, which require no external intervention except a source of visible light. Our aim is to prevent bacterial adherence to these surfaces and eliminate them as reservoirs of nosocomial pathogens, thus presenting a valuable advance in infection control. A two-layer system with one layer comprising photosensitizer-incorporated HDPE, and one layer comprising HDPE alone is also described to demonstrate the versatility of our approach. The photosensitizer-incorporated materials are capable of reducing the adherence of viable bacteria by up to 3.62 Log colony forming units (CFU) per square centimeter of material surface for methicillin resistant Staphylococcus aureus (MRSA), and by up to 1.51 Log CFU/cm2 for Escherichia coli. Potential applications for the technology are in antimicrobial coatings for, or materials comprising objects, such as tubing, collection bags, handrails, finger-plates on hospital doors, or medical equipment found in the healthcare setting.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The biocompatibility and biodegradability of natural silk fibres and the benign conditions under which they (with impressive mechanical properties) are produced represent a biomimetic ideal. This ideal has inspired people in both academia and industry to prepare silk-mimetic polymers and proteins by chemical and/or biotechnological means. in the present paper, we aim to give an overview of the design principles of such silk-inspired polymers/proteins, their processing into various materials morphologies, their mechanical and biological properties, and, finally, their technical and biomedical applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Melt viscosity is one of the main factors affecting product quality in extrusion processes particularly with regard to recycled polymers. However, due to wide variability in the physical properties of recycled feedstock, it is difficult to maintain the melt viscosity during extrusion of polymer blends and obtain good quality product without generating scrap. This research investigates the application of ultrasound and temperature control in an automatic extruder controller, which has ability to maintain constant melt viscosity from variable recycled polymer feedstock during extrusion processing. An ultrasonic modulation system has been developed and fitted to the extruder prior to the die to convey ultrasonic energy from a high power ultrasonic generator to the polymer melt. Two separate control loops have been developed to run simultaneously in one controller: the first loop controls the ultrasonic energy or temperature to maintain constant die pressure, the second loop is used to control extruder screw speed to maintain constant throughput at the extruder die. Time response and energy consumption of the control methods in real-time experiments are also investigated and reported this paper.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We describe, for the first time, hydrogel-forming microneedle arrays prepared from "super swelling" polymeric compositions. We produced a microneedle formulation with enhanced swelling capabilities from aqueous blends containing 20% w/w Gantrez S-97, 7.5% w/w PEG 10,000 and 3% w/w Na2CO3 and utilised a drug reservoir of a lyophilised wafer-like design. These microneedle-lyophilised wafer compositions were robust and effectively penetrated skin, swelling extensively, but being removed intact. In in vitro delivery experiments across excised neonatal porcine skin, approximately 44 mg of the model high dose small molecule drug ibuprofen sodium was delivered in 24 h, equating to 37% of the loading in the lyophilised reservoir. The super swelling microneedles delivered approximately 1.24 mg of the model protein ovalbumin over 24 h, equivalent to a delivery efficiency of approximately 49%. The integrated microneedle-lyophilised wafer delivery system produced a progressive increase in plasma concentrations of ibuprofen sodium in rats over 6 h, with a maximal concentration of approximately 179 µg/ml achieved in this time. The plasma concentration had fallen to 71±6.7 µg/ml by 24 h. Ovalbumin levels peaked in rat plasma after only 1 hour at 42.36±17.01 ng/ml. Ovalbumin plasma levels then remained almost constant up to 6 h, dropping somewhat at 24 h, when 23.61±4.84 ng/ml was detected. This work represents a significant advancement on conventional microneedle systems, which are presently only suitable for bolus delivery of very potent drugs and vaccines. Once fully developed, such technology may greatly expand the range of drugs that can be delivered transdermally, to the benefit of patients and industry. Accordingly, we are currently progressing towards clinical evaluations with a range of candidate molecules.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Here we consider the numerical optimization of active surface plasmon polariton (SPP) trench waveguides suited for integration with luminescent polymers for use as highly localized SPP source devices in short-scale communication integrated circuits. The numerical analysis of the SPP modes within trench waveguide systems provides detailed information on the mode field components, effective indices, propagation lengths and mode areas. Such trench waveguide systems offer extremely high confinement with propagation on length scales appropriate to local interconnects, along with high efficiency coupling of dipolar emitters to waveguided plasmonic modes which can be close to 80%. The large Purcell factor exhibited in these structures will further lead to faster modulation capabilities along with an increased quantum yield beneficial for the proposed plasmon-emitting diode, a plasmonic analog of the light-emitting diode. The confinement of studied guided modes is on the order of 50 nm and the delay over the shorter 5 μm length scales will be on the order of 0.1 ps for the slowest propagating modes of the system, and significantly less for the faster modes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this paper is to develop a new extruder control system for recycled materials which has ability to automatically maintain constant a polymer melt viscosity of mixed recycled polymers during extrusion, regardless of variations in the Melt Flow Index (MFI) of recycled mixed grade high density polyethylene (HDPE) feedstock. A closed-loop controller is developed to automatically regulate screw speed and barrel temperature profile to achieve constant viscosity and enable consistent processing of variable grade recycled HDPE materials. The experimental results of real time viscosity measurement and control using a 38mm single screw extruder with different recycled HDPEs with widely different MFIs are reported in this work