164 resultados para Dna damage


Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Previously we identified a DNA damage response-deficient (DDRD) molecular subtype within breast cancer. A 44-gene assay identifying this subtype was validated as predicting benefit from DNA-damaging chemotherapy. This subtype was defined by interferon signaling. In this study, we address the mechanism of this immune response and its possible clinical significance.

METHODS: We used immunohistochemistry (IHC) to characterize immune infiltration in 184 breast cancer samples, of which 65 were within the DDRD subtype. Isogenic cell lines, which represent DDRD-positive and -negative, were used to study the effects of chemokine release on peripheral blood mononuclear cell (PBMC) migration and the mechanism of immune signaling activation. Finally, we studied the association between the DDRD subtype and expression of the immune-checkpoint protein PD-L1 as detected by IHC. All statistical tests were two-sided.

RESULTS: We found that DDRD breast tumors were associated with CD4+ and CD8+ lymphocytic infiltration (Fisher's exact test P < .001) and that DDRD cells expressed the chemokines CXCL10 and CCL5 3.5- to 11.9-fold more than DNA damage response-proficient cells (P < .01). Conditioned medium from DDRD cells statistically significantly attracted PBMCs when compared with medium from DNA damage response-proficient cells (P < .05), and this was dependent on CXCL10 and CCL5. DDRD cells demonstrated increased cytosolic DNA and constitutive activation of the viral response cGAS/STING/TBK1/IRF3 pathway. Importantly, this pathway was activated in a cell cycle-specific manner. Finally, we demonstrated that S-phase DNA damage activated expression of PD-L1 in a STING-dependent manner.

CONCLUSIONS: We propose a novel mechanism of immune infiltration in DDRD tumors, independent of neoantigen production. Activation of this pathway and associated PD-L1 expression may explain the paradoxical lack of T-cell-mediated cytotoxicity observed in DDRD tumors. We provide a rationale for exploration of DDRD in the stratification of patients for immune checkpoint-based therapies.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Considerable controversy still exists as to whether electric and magnetic fields (MF) at extremely low frequencies are genotoxic to humans. The aim of this study was to test the ability of alternating magnetic fields to induce DNA and chromosomal damage in primary human fibroblasts. Single- and double-strand breaks were quantified using the alkaline comet assay and the gammaH2AX-foci assay, respectively. Chromosomal damage was assayed for unstable aberrations, sister chromatid exchange and micronuclei. Cells were exposed to switching fields - 5min on, 10min off - for 15h over the range 50-1000microT. Exposure to ionizing radiation was used as a positive-effect calibration. In this study two separate MF exposure systems were used. One was based on a custom-built solenoid coil system and the other on a commercial system almost identical to that used in previous studies by the EU REFLEX programme. With neither system could DNA damage or chromosomal damage be detected as a result of exposure of fibroblasts to switching MF. The sensitive gammaH2AX assay could also not detect significant DNA damage in the MF-exposed fibroblasts, although the minimum threshold for this assay was equivalent to an X-ray dose of 0.025Gy. Therefore, with comparable MF parameters employed, this study could not confirm previous studies reporting significant effects for both the alkaline and neutral comet assays and chromosomal aberration induction.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Photooxidative damage was induced predominantly at a single guanine base in a target DNA by irradiation (lambda > 330 nm) in the presence of complementary oligodeoxynucleotide conjugates (ODN-5'-linker-[Ru(phen)3]2+) (phen = 1,10-phenanthroline). The target DNA represents the b2a2 variant of the chimeric bcr-abl gene implicated in the pathogenesis of chronic myeloid leukaemia, and the sequence of the 17mer ODN component of the conjugate (3' G G T A G T T A T T C C T T C T T 5') was complementary to the junction region of the sense strand sequence of this oncogene. Two different conjugates were prepared, both of them by reaction of the appropriate succinimide ester with 5'-hexylamino-derivatised 17mer ODN. In Ru-ODN-1 (7) the linker was -(CH2)6-NHCO-bpyMe (-bpyMe = 4'-[4-methyl-2,2'-bipyridyl]), whereas in Ru-ODN-2 (13) it was -(CH2)6-NHCO-(CH2)3-CONH-phen. Photoexcitation of either of the conjugates when hybridised with the 32P-5'-end-labelled target 34mer 5'T G A C C A T C A A T A A G G A A G A A G21 C C C T T C A G C G G C C 3' (ODN binding site underlined) led to an alkali-labile site predominantly (> 90%) at the G21 base, which is at the junction of double-stranded and single-stranded regions of the hybrid. Greater yields were found with Ru-ODN-1 (7) than with Ru ODN-2 (13). In contrast to this specific cleavage with Ru-ODN-1 (7) or Ru-ODN-2 (13), alkali-labile sites were generated at all guanines when the 34mer was photolysed in the presence of the free sensitiser [Ru(phen)3]2+. Since [Ru(phen)3]2+ was shown to react with 2'-deoxyguanosine to form the diastereomers of a spiroiminodihydantoin derivative (the product from 1O2 reaction), 1O2 might also be an oxidizing species in the case of Ru-ODN-1 (7) and Ru-ODN-2 (13). Therefore to determine the range of reaction, a series of 'variant' targets was prepared, in which G21 was replaced with a cytosine and a guanine substituted for a base further towards the 3'-end (e.g. Variant 3; 5'T G A C C A T C A A T A A G G A A G A A C C G23 C T T C A G C G G32 C C3'). While it was noted that efficient reaction took place at distances apparently remote from the photosensitiser (e.g at G32, but not G23 for Variant 3), this effect could be attributed to hairpinning of the single-stranded region of the target. These results are therefore consistent with the photooxidative damage being induced by a reaction close to the photosensitiser rather than by a diffusible species such as 1O2.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This study examined the effect of exogenous benzo[ a ]pyrene (BaP), an important constituent of cigarette smoke, on cultured bovine retinal pigment epithelial (RPE) cells. Evidence is presented for its metabolic conversion into benzo[ a ]pyrene diol epoxide (BPDE) and the consequent formation of potentially cytotoxic nucleobase adducts in DNA. Cultured RPE cells were treated with BaP at concentrations in the range of 0–100 µm. The presence of BaP was found to cause inhibition of cell growth and replication. BaP induced the expression of a phase I drug metabolizing enzyme which was identified as cytochrome P450 1A1 (CYP 1A1) by RT–PCR and by Western blotting. Coincident with the increased expression of CYP 1A1, covalent adducts between the mutagenic metabolite BPDE and DNA could be detected within RPE cells by immunocytochemical staining. Additional support for their formation was afforded by nuclease P1 enhanced 32P-postlabelling assays on cellular DNA. Single-cell gel electrophoresis (comet) assays showed that exposure of RPE cells to BaP rendered them markedly more susceptible to DNA damage induced by broad band UVB or blue light laser irradiation. In the case of UVB, this is consistent with the photosensitization of DNA cleavage by nucleobase adducts of BPDE. Collectively, these findings imply that BaP has a significant impact on RPE cell pathophysiology and suggest mechanisms whereby exposure to cigarette smoke might cause RPE dysfunction and cell death, thus possibly contributing to degenerative disorders of the retina.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Objective: to determine the incidence of Fas positivity and DNA double stranded breaks (DSB) as indicators of early and late stage apoptosis in ejaculated sperm. Design: Fas positivity was assessed by flow cytometry and DSB by neutral Comet assay Setting: Andrology Laboratory, Royal Maternity Hospita, Belfast Northern Ireland, UK. Patients: 45 infertile men undergoing infertility investigations and 10 fertile men undergoing vasectomies Main Outcome measures: Perecentage Fas positive cells, percentage DNA fragmentation, olive tail moments Results: The apoptotic marker Fas was detected in ejaculated sperm, with a higher incidence of Fas positivity in teratozoospermic and asthenozoospermic than in normozoospermic semen. No Fas positivity was observed in fertile mens’ sperm. DSB were greater in infertile than in fertile mens’ sperm and also greater in sperm in semen than in sperm prepared for assisted conception. There was an inverse relationship between DSB and both sperm concentration and motility. There was no relationship between Fas positivity and DNA damage. Conclusion: Fas was expressed in sperm of infertile men. In contrast, DNA fragmentation was observed in all sperm of fertile and infertile men and correlated with inadequate concentration and motility, which suggests that sperm DSB are ubiquitous and are not solely associated with apoptosis.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The aims of this study were to investigate mechanisms of action involved in H2AX phosphorylation by DNA interstrand crosslinking (ICL) agents and determine whether gamma H2AX could be a suitable pharmacological marker for identifying potential ICL cellular chemosensitivity. In normal human fibroblasts, after treatment with nitrogen mustard (HN2) or cisplatin, the peak gamma H2AX response was detected 2-3 h after the peak of DNA ICLs measured using the comet assay, a validated method for detecting ICLs in vitro or in clinical samples. Detection of gamma H2AX foci by immunofluorescence microscopy could be routinely detected with 6-10 times lower concentrations of both drugs compared to detection of ICLs using the comet assay. A major pathway for repairing DNA ICLs is the initial unhooking of the ICL by the ERCC1-XPF endonuclease followed by homologous recombination. HN2 or cisplatin-induced gamma H2AX foci persisted significantly longer in both, ERCC1 or XRCC3 (homologous recombination) defective Chinese hamster cells that are highly sensitive to cell killing by ICL agents compared to wild type or ionising radiation sensitive XRCC5 cells. An advantage of using gamma H2AX immunofluorescence over the comet assay is that it appears to detect ICL chemosensitivity in both ERCC1 and HR defective cells. With HN2 and cisplatin, gamma H2AX foci also persisted in chemosensitive human ovarian cancer cells (A2780) compared to chemoresistant (A2780cisR) cells. These results show that gamma H2AX can act as a highly sensitive and general marker of DNA damage induced by HN2 or cisplatin and shows promise for predicting potential cellular chemosensitivity to ICL agents. (c) 2008 Elsevier Inc. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The results of an investigation into the damage caused to dry plasmid DNA after irradiation by fast (keV) hydrogen atoms are presented. Agarose gel electrophoresis was used to assess single and double strand break yields as a function of dose in dry DNA samples deposited on a mica substrate. Damage levels were observed to increase with beam energy. Strand break yields demonstrated a considerable dependence on sample structure and the method of sample preparation. Additionally, the effect of high-Z nanoparticles on damage levels was investigated by irradiating DNA samples containing controlled amounts of gold nanoparticles. In contrast to previous (photonic) studies, no enhancement of strand break yields was observed with the particles showing a slight radioprotective effect. A model of DNA damage as a function of dose has been constructed in terms of the probability for the creation of single and double strand breaks, per unit ion flux. This model provides quantitative conclusions about the effects of both gold nanoparticles and the different buffers used in performing the assays and, in addition, infers the proportion of multiply damaged fragments.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper reports the results of the most recent in a series of EHSRE workshops designed to synthesize the current state of the field in Andrology and provide recommendations for future work (ESHRE 1998; 1996). Its focus is on methods for detecting sperm DNA damage and potential application of new knowledge about sperm chromatin organization, vulnerability and repair to improve the diagnosis and treatment of clinical infertility associated with that damage. Equally important is the use and reliability of these tests to identify the extent to which environmental contaminants or pharmaceutical agents may contribute to the incidence of sperm DNA damage and male fertility problems. A working group# under the auspices of ESHRE met in May 2009 to assess the current knowledgebase and suggest future basic and clinical research directions. This document presents a synthesis of the working group’s understanding of the recent literature and collective discussions on the current state of knowledge of sperm chromatin structure and function during fertilization. It highlights the biological, assay and clinical uncertainties that require further research and ends with a series of recommendations.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The induction and rejoining of radiation-induced double-strand breaks (DSBs) in cells of six bladder tumor cell lines (T24, UM-UC3, TCC-SUP, RT112, J82, HT1376) were measured using the neutral comet assay. Radiation dose-response curves (0-60 Gy) showed damage (measured as mean tail moment) for five of the cell lines in the same rank order as cell survival (measured over 0-10 Gy), with the least damage in the most radioresistant cell line. Damage induction correlated well with clonogenic survival at high doses (SF10) for all six cell lines. At the clinically relevant dose of 2 Gy, correlation was good for four cell lines but poor for two (TCC-SUP and T24), The rejoining process had a fast and slow component for all cell lines. The rate of these two components of DNA repair did not correlate with cell survival. However, the time taken to reduce the amount of DNA damage to preirradiated control levels correlated positively with cell survival at 10 Gy but not 2 Gy; radioresistant cells rejoined the induced DSBs to preirradiation control levels more quickly than the radiosensitive cells. Although the results show good correlation between SF10 and DSBs for all six cell lines, the lack of correlation with SF2 for TCC-SUP and T24 cells would suggest that a predictive test should be carried out at the clinically relevant dose. At present the neutral comet assay cannot achieve this. (C) 2000 by Radiation Research Society.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A significant proportion of human cancers overexpress DNA polymerase beta (Pol beta), the major DNA polymerase involved in base excision repair. The underlying mechanism and biological consequences of overexpression of this protein are unknown. We examined whether Pol beta, expressed at levels found in tumor cells, is involved in the repair of DNA damage induced by oxaliplatin treatment and whether the expression status of this protein alters the sensitivity of cells to oxaliplatin. DNA damage induced by oxaliplatin treatment of HCT116 and HT29 colon cancer cells was observed to be associated with the stabilization of Pol beta protein on chromatin. In comparison with HCT116 colon cancer cells, isogenic oxaliplatin-resistant (HCT-OR) cells were found to have higher constitutive levels of Pol beta protein, faster in vitro repair of a DNA substrate containing a single nucleotide gap and faster repair of 1,2-GG oxaliplatin adduct levels in cells. In HCT-OR cells, small interfering RNA knockdown of Pol beta delayed the repair of oxaliplatin-induced DNA damage. In a different model system, Pol beta-deficient fibroblasts were less able to repair 1,2-GG oxaliplatin adducts and were hypersensitive to oxaliplatin treatment compared with isogenic Pol beta-expressing cells. Consistent with previous studies, Pol beta-deficient mouse fibroblasts were not hypersensitive to cisplatin treatment. These data provide the first link between oxaliplatin sensitivity and DNA repair involving Pol beta. They demonstrate that Pol beta modulates the sensitivity of cells to oxaliplatin treatment. Oncogene (2010) 29, 463-468; doi:10.1038/onc.2009.327; published online 19 October 2009

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Purpose: The aim of the work was to compare critically the radiosensitivity of the supercoiled and relaxed forms of a plasmid DNA system commonly used in DNA damage assays.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Purpose: Theoretical modelling techniques are often used to simulate the action of ionizing radiations on cells at the nanometre level, Using monoenergetic vacuum-UV (VUV) radiation to irradiate DNA either dry or humidified, the action spectra for the induction of DNA damage by low energy photons and the role of water and can be studied. These data provide inputs for the theoretical models.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Purpose: To measure action spectra for the induction of single- strand breaks (SSB) and double-strand breaks (DSB) in plasmid DNA by low-energy photons and provide estimates for the energy dependence of strand-break formation important for track-structure simulations of DNA damage.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In studies of radiation-induced DNA fragmentation and repair, analytical models may provide rapid and easy-to-use methods to test simple hypotheses regarding the breakage and rejoining mechanisms involved. The random breakage model, according to which lesions are distributed uniformly and independently of each other along the DNA, has been the model most used to describe spatial distribution of radiation-induced DNA damage. Recently several mechanistic approaches have been proposed that model clustered damage to DNA. In general, such approaches focus on the study of initial radiation-induced DNA damage and repair, without considering the effects of additional (unwanted and unavoidable) fragmentation that may take place during the experimental procedures. While most approaches, including measurement of total DNA mass below a specified value, allow for the occurrence of background experimental damage by means of simple subtractive procedures, a more detailed analysis of DNA fragmentation necessitates a more accurate treatment. We have developed a new, relatively simple model of DNA breakage and the resulting rejoining kinetics of broken fragments. Initial radiation-induced DNA damage is simulated using a clustered breakage approach, with three free parameters: the number of independently located clusters, each containing several DNA double-strand breaks (DSBs), the average number of DSBs within a cluster (multiplicity of the cluster), and the maximum allowed radius within which DSBs belonging to the same cluster are distributed. Random breakage is simulated as a special case of the DSB clustering procedure. When the model is applied to the analysis of DNA fragmentation as measured with pulsed-field gel electrophoresis (PFGE), the hypothesis that DSBs in proximity rejoin at a different rate from that of sparse isolated breaks can be tested, since the kinetics of rejoining of fragments of varying size may be followed by means of computer simulations. The problem of how to account for background damage from experimental handling is also carefully considered. We have shown that the conventional procedure of subtracting the background damage from the experimental data may lead to erroneous conclusions during the analysis of both initial fragmentation and DSB rejoining. Despite its relative simplicity, the method presented allows both the quantitative and qualitative description of radiation-induced DNA fragmentation and subsequent rejoining of double-stranded DNA fragments. (C) 2004 by Radiation Research Society.