90 resultados para Distributed artificial intelligence - multiagent systems
Resumo:
This paper presents a novel method of audio-visual feature-level fusion for person identification where both the speech and facial modalities may be corrupted, and there is a lack of prior knowledge about the corruption. Furthermore, we assume there are limited amount of training data for each modality (e.g., a short training speech segment and a single training facial image for each person). A new multimodal feature representation and a modified cosine similarity are introduced to combine and compare bimodal features with limited training data, as well as vastly differing data rates and feature sizes. Optimal feature selection and multicondition training are used to reduce the mismatch between training and testing, thereby making the system robust to unknown bimodal corruption. Experiments have been carried out on a bimodal dataset created from the SPIDRE speaker recognition database and AR face recognition database with variable noise corruption of speech and occlusion in the face images. The system's speaker identification performance on the SPIDRE database, and facial identification performance on the AR database, is comparable with the literature. Combining both modalities using the new method of multimodal fusion leads to significantly improved accuracy over the unimodal systems, even when both modalities have been corrupted. The new method also shows improved identification accuracy compared with the bimodal systems based on multicondition model training or missing-feature decoding alone.
Resumo:
In distributed networks, it is often useful for the nodes to be aware of dense subgraphs, e.g., such a dense subgraph could reveal dense substructures in otherwise sparse graphs (e.g. the World Wide Web or social networks); these might reveal community clusters or dense regions for possibly maintaining good communication infrastructure. In this work, we address the problem of self-awareness of nodes in a dynamic network with regards to graph density, i.e., we give distributed algorithms for maintaining dense subgraphs that the member nodes are aware of. The only knowledge that the nodes need is that of the dynamic diameter D, i.e., the maximum number of rounds it takes for a message to traverse the dynamic network. For our work, we consider a model where the number of nodes are fixed, but a powerful adversary can add or remove a limited number of edges from the network at each time step. The communication is by broadcast only and follows the CONGEST model. Our algorithms are continuously executed on the network, and at any time (after some initialization) each node will be aware if it is part (or not) of a particular dense subgraph. We give algorithms that (2 + e)-approximate the densest subgraph and (3 + e)-approximate the at-least-k-densest subgraph (for a given parameter k). Our algorithms work for a wide range of parameter values and run in O(D log n) time. Further, a special case of our results also gives the first fully decentralized approximation algorithms for densest and at-least-k-densest subgraph problems for static distributed graphs. © 2012 Springer-Verlag.
Resumo:
Inter-component communication has always been of great importance in the design of software architectures and connectors have been considered as first-class entities in many approaches [1][2][3]. We present a novel architectural style that is derived from the well-established domain of computer networks. The style adopts the inter-component communication protocol in a novel way that allows large scale software reuse. It mainly targets real-time, distributed, concurrent, and heterogeneous systems.
Resumo:
Recent technological advances have increased the quantity of movement data being recorded. While valuable knowledge can be gained by analysing such data, its sheer volume creates challenges. Geovisual analytics, which helps the human cognition process by using tools to reason about data, offers powerful techniques to resolve these challenges. This paper introduces such a geovisual analytics environment for exploring movement trajectories, which provides visualisation interfaces, based on the classic space-time cube. Additionally, a new approach, using the mathematical description of motion within a space-time cube, is used to determine the similarity of trajectories and forms the basis for clustering them. These techniques were used to analyse pedestrian movement. The results reveal interesting and useful spatiotemporal patterns and clusters of pedestrians exhibiting similar behaviour.
Resumo:
Three issues usually are associated with threat prevention intelligent surveillance systems. First, the fusion and interpretation of large scale incomplete heterogeneous information; second, the demand of effectively predicting suspects’ intention and ranking the potential threats posed by each suspect; third, strategies of allocating limited security resources (e.g., the dispatch of security team) to prevent a suspect’s further actions towards critical assets. However, in the literature, these three issues are seldomly considered together in a sensor network based intelligent surveillance framework. To address
this problem, in this paper, we propose a multi-level decision support framework for in-time reaction in intelligent surveillance. More specifically, based on a multi-criteria event modeling framework, we design a method to predict the most plausible intention of a suspect. Following this, a decision support model is proposed to rank each suspect based on their threat severity and to determine resource allocation strategies. Finally, formal properties are discussed to justify our framework.
Resumo:
Revising its beliefs when receiving new information is an important ability of any intelligent system. However, in realistic settings the new input is not always certain. A compelling way of dealing with uncertain input in an agent-based setting is to treat it as unreliable input, which may strengthen or weaken the beliefs of the agent. Recent work focused on the postulates associated with this form of belief change and on finding semantical operators that satisfy these postulates. In this paper we propose a new syntactic approach for this form of belief change and show that it agrees with the semantical definition. This makes it feasible to develop complex agent systems capable of efficiently dealing with unreliable input in a semantically meaningful way. Additionally, we show that imposing restrictions on the input and the beliefs that are entailed allows us to devise a tractable approach suitable for resource-bounded agents or agents where reactiveness is of paramount importance.
Resumo:
The BDI architecture, where agents are modelled based on their beliefs, desires and intentions, provides a practical approach to develop large scale systems. However, it is not well suited to model complex Supervisory Control And Data Acquisition (SCADA) systems pervaded by uncertainty. In this paper we address this issue by extending the operational semantics of Can(Plan) into Can(Plan)+. We start by modelling the beliefs of an agent as a set of epistemic states where each state, possibly using a different representation, models part of the agent's beliefs. These epistemic states are stratified to make them commensurable and to reason about the uncertain beliefs of the agent. The syntax and semantics of a BDI agent are extended accordingly and we identify fragments with computationally efficient semantics. Finally, we examine how primitive actions are affected by uncertainty and we define an appropriate form of lookahead planning.
Resumo:
Game-theoretic security resource allocation problems have generated significant interest in the area of designing and developing security systems. These approaches traditionally utilize the Stackelberg game model for security resource scheduling in order to improve the protection of critical assets. The basic assumption in Stackelberg games is that a defender will act first, then an attacker will choose their best response after observing the defender’s strategy commitment (e.g., protecting a specific asset). Thus, it requires an attacker’s full or partial observation of a defender’s strategy. This assumption is unrealistic in real-time threat recognition and prevention. In this paper, we propose a new solution concept (i.e., a method to predict how a game will be played) for deriving the defender’s optimal strategy based on the principle of acceptable costs of minimax regret. Moreover, we demonstrate the advantages of this solution concept by analyzing its properties.
Resumo:
Dynamic economic load dispatch (DELD) is one of the most important steps in power system operation. Various optimisation algorithms for solving the problem have been developed; however, due to the non-convex characteristics and large dimensionality of the problem, it is necessary to explore new methods to further improve the dispatch results and minimise the costs. This article proposes a hybrid differential evolution (DE) algorithm, namely clonal selection-based differential evolution (CSDE), to solve the problem. CSDE is an artificial intelligence technique that can be applied to complex optimisation problems which are for example nonlinear, large scale, non-convex and discontinuous. This hybrid algorithm combines the clonal selection algorithm (CSA) as the local search technique to update the best individual in the population, which enhances the diversity of the solutions and prevents premature convergence in DE. Furthermore, we investigate four mutation operations which are used in CSA as the hyper-mutation operations. Finally, an efficient solution repair method is designed for DELD to satisfy the complicated equality and inequality constraints of the power system to guarantee the feasibility of the solutions. Two benchmark power systems are used to evaluate the performance of the proposed method. The experimental results show that the proposed CSDE/best/1 approach significantly outperforms nine other variants of CSDE and DE, as well as most other published methods, in terms of the quality of the solution and the convergence characteristics.
Resumo:
In many CCTV and sensor network based intelligent surveillance systems, a number of attributes or criteria are used to individually evaluate the degree of potential threat of a suspect. The outcomes for these attributes are in general from analytical algorithms where data are often pervaded with uncertainty and incompleteness. As a result, such individual threat evaluations are often inconsistent, and individual evaluations can change as time elapses. Therefore, integrating heterogeneous threat evaluations with temporal influence to obtain a better overall evaluation is a challenging issue. So far, this issue has rarely be considered by existing event reasoning frameworks under uncertainty in sensor network based surveillance. In this paper, we first propose a weighted aggregation operator based on a set of principles that constraints the fusion of individual threat evaluations. Then, we propose a method to integrate the temporal influence on threat evaluation changes. Finally, we demonstrate the usefulness of our system with a decision support event modeling framework using an airport security surveillance scenario.
Resumo:
Situation calculus has been applied widely in arti?cial intelligence to model and reason about actions and changes in dynamic systems. Since actions carried out by agents will cause constant changes of the agents’ beliefs, how to manage
these changes is a very important issue. Shapiro et al. [22] is one of the studies that considered this issue. However, in this framework, the problem of noisy sensing, which often presents in real-world applications, is not considered. As a
consequence, noisy sensing actions in this framework will lead to an agent facing inconsistent situation and subsequently the agent cannot proceed further. In this paper, we investigate how noisy sensing actions can be handled in iterated
belief change within the situation calculus formalism. We extend the framework proposed in [22] with the capability of managing noisy sensings. We demonstrate that an agent can still detect the actual situation when the ratio of noisy sensing actions vs. accurate sensing actions is limited. We prove that our framework subsumes the iterated belief change strategy in [22] when all sensing actions are accurate. Furthermore, we prove that our framework can adequately handle belief introspection, mistaken beliefs, belief revision and belief update even with noisy sensing, as done in [22] with accurate sensing actions only.
Resumo:
A number of neural networks can be formulated as the linear-in-the-parameters models. Training such networks can be transformed to a model selection problem where a compact model is selected from all the candidates using subset selection algorithms. Forward selection methods are popular fast subset selection approaches. However, they may only produce suboptimal models and can be trapped into a local minimum. More recently, a two-stage fast recursive algorithm (TSFRA) combining forward selection and backward model refinement has been proposed to improve the compactness and generalization performance of the model. This paper proposes unified two-stage orthogonal least squares methods instead of the fast recursive-based methods. In contrast to the TSFRA, this paper derives a new simplified relationship between the forward and the backward stages to avoid repetitive computations using the inherent orthogonal properties of the least squares methods. Furthermore, a new term exchanging scheme for backward model refinement is introduced to reduce computational demand. Finally, given the error reduction ratio criterion, effective and efficient forward and backward subset selection procedures are proposed. Extensive examples are presented to demonstrate the improved model compactness constructed by the proposed technique in comparison with some popular methods.
Resumo:
Visual salience is an intriguing phenomenon observed in biological neural systems. Numerous attempts have been made to model visual salience mathematically using various feature contrasts, either locally or globally. However, these algorithmic models tend to ignore the problem’s biological solutions, in which visual salience appears to arise during the propagation of visual stimuli along the visual cortex. In this paper, inspired by the conjecture that salience arises from deep propagation along the visual cortex, we present a Deep Salience model where a multi-layer model based on successive Markov random fields (sMRF) is proposed to analyze the input image successively through its deep belief propagation. As a result, the foreground object can be automatically separated from the background in a fully unsupervised way. Experimental evaluation on the benchmark dataset validated that our Deep Salience model can consistently outperform eleven state-of-the-art salience models, yielding the higher rates in the precision-recall tests and attaining the best F-measure and mean-square error in the experiments.
Resumo:
Radiation induced bystander effects are secondary effects caused by the production of chemical signals by cells in response to radiation. We present a Bio-PEPA model which builds on previous modelling work in this field to predict: the surviving fraction of cells in response to radiation, the relative proportion of cell death caused by bystander signalling, the risk of non-lethal damage and the probability of observing bystander signalling for a given dose. This work provides the foundation for modelling bystander effects caused by biologically realistic dose distributions, with implications for cancer therapies.
Resumo:
This book provides a comprehensive tutorial on similarity operators. The authors systematically survey the set of similarity operators, primarily focusing on their semantics, while also touching upon mechanisms for processing them effectively.
The book starts off by providing introductory material on similarity search systems, highlighting the central role of similarity operators in such systems. This is followed by a systematic categorized overview of the variety of similarity operators that have been proposed in literature over the last two decades, including advanced operators such as RkNN, Reverse k-Ranks, Skyline k-Groups and K-N-Match. Since indexing is a core technology in the practical implementation of similarity operators, various indexing mechanisms are summarized. Finally, current research challenges are outlined, so as to enable interested readers to identify potential directions for future investigations.
In summary, this book offers a comprehensive overview of the field of similarity search operators, allowing readers to understand the area of similarity operators as it stands today, and in addition providing them with the background needed to understand recent novel approaches.