104 resultados para Diabetic-patients
Resumo:
Aims/hypothesis Glomerular hyperfiltration is a well established phenomenon occurring early in some patients with type 1 diabetes. However, there is no consistent answer regarding whether hyperfiltration predicts later development of nephropathy. We performed a systematic review and meta-analysis of observational studies that compared the risk of developing diabetic nephropathy in patients with and without glomerular hyperfiltration and also explored the impact of baseline GFR.
Methods A systematic review and meta-analysis was carried out. Cohort studies in type 1 diabetic participants were included if they contained data on the development of incipient or overt nephropathy with baseline measurement
of GFR and presence or absence of hyperfiltration.
Results We included ten cohort studies following 780 patients. After a study median follow-up of 11.2 years, 130 patients had developed nephropathy. Using a random effects model, the pooled odds of progression to a minimum
of microalbuminuria in patients with hyperfiltration was 2.71 (95% CI 1.20–6.11) times that of patients with normofiltration. There was moderate heterogeneity (heterogeneity test p=0.05, measure of degree of inconsistency=48%) and some evidence of funnel plot asymmetry, possibly due to publication bias. The pooled weighted mean difference in baseline GFR was 13.8 ml min-1 1.73 m-2 (95% CI 5.0–22.7) greater in the group progressing to nephropathy than in those not progressing (heterogeneity test p<0.01).
Conclusions/interpretation In published studies, individuals with glomerular hyperfiltration were at increased risk of progression to diabetic nephropathy using study level data. Further larger studies are required to explore this relationship and the role of potential confounding variables.
Resumo:
DIN (diabetic nephropathy) is the leading cause of end-stage renal disease worldwide and develops in 25-40% of patients with Type 1 or Type 2 diabetes mellitus. Elevated blood glucose over long periods together with glomerular hypertension leads to progressive glomerulosclerosis and tubulointerstitial fibrosis in susceptible individuals. Central to the pathology of DIN are cytokines and growth factors such as TGF-beta (transforming growth factor beta) superfamily members, including BMPs (bone morphogenetic protein) and TGF-beta 1, which play key roles in fibrogenic responses of the kidney, including podocyte loss, mesangial cell hypertrophy, matrix accumulation and tubulointerstitial fibrosis. Many of these responses can be mimicked in in vitro models of cells cultured in high glucose. We have applied differential gene expression technologies to identify novel genes expressed in in vitro and in vivo models of DN and, importantly, in human renal tissue. By mining these datasets and probing the regulation of expression and actions of specific molecules, we have identified novel roles for molecules such as Gremlin, IHG-1 (induced in high glucose-1) and CTGF (connective tissue growth factor) in DIN and potential regulators of their bioactions.
Resumo:
PURPOSE. Advanced glycation end products (AGES) form irreversible cross- links with many macromolecules and have been shown to accumulate in tissues at an accelerated rate in diabetes. In the present study, AGE formation in vitreous was examined in patients of various ages and in patients with diabetes. Ex vivo investigations were performed on bovine vitreous incubated in glucose to determine AGE formation and cross-linking of vitreous collagen. METHODS. By means of an AGE-specific enzyme-linked immunosorbent assay (ELISA), AGE formation was investigated in vitreous samples obtained after pars plana vitrectomy in patients with and without diabetes. In addition, vitreous AGES were investigated in bovine vitreous collagen after incubation in high glucose, high glucose with aminoguanidine, or normal saline for as long as 8 weeks. AGEs and AGE cross-linking was subsequently determined by quantitative and qualitative assays. RESULTS. There was a significant correlation between AGEs and increasing age in patients without diabetes (r = 0.74). Furthermore, a comparison between age-matched diabetic and nondiabetic vitreous showed a significantly higher level of AGEs in the patients with diabetes (P < 0.005). Collagen purified from bovine vitreous incubated in 0.5 M glucose showed an increase in AGE formation when observed in dot blot analysis, immunogold labeling, and AGE ELISA. Furthermore, there was increased cross-linking of collagen in the glucose-incubated vitreous, when observed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and protein separation. This cross-linking was effectively inhibited by coincubation with 10 mM aminoguanidine. CONCLUSIONS. This study suggests that AGEs may form in vitreous with increasing age. This process seems to be accelerated in the presence of diabetes and as a consequence of exposure to high glucose. Advanced glycation and AGE cross-linking of the vitreous collagen network may help to explain the vitreous abnormalities characteristic of diabetes.
Resumo:
Aims To investigate mortality in South Asian patients with insulin-treated diabetes and compare it with mortality in non South Asian patients and in the general population.
Resumo:
Increasing evidence supports a role for glycated insulin in the insulin-resistant state of type 2 diabetes. We measured 24-hour profiles of plasma glycated insulin, using a novel radioimmunoassay (RIA), to evaluate the effects of meal stimulation and intermittent fasting on circulating concentrations of plasma glycated insulin in type 2 diabetes. Patients (n = 6; hemoglobin A(1c) [HbA(1c)], 7.2% +/- 0.6%; fasting plasma glucose, 7.4 +/- 0.7 mmol/L; body mass index [BMI], 35.7 +/- 3.5 kg/m(2); age, 56.3 +/- 4.4 years) were admitted for 24 hours and received a standardized meal regimen. Half-hourly venous samples were taken for plasma glycated insulin, glucose, insulin, and C-peptide concentrations between 8 Am and midnight and 2-hourly overnight. The mean plasma glycated insulin concentration over 24 hours was 27.8 +/- 1.2 pmol/L with a mean ratio of insulin:glycated insulin of 11:1. Circulating glucose, insulin, C-peptide, and glycated insulin followed a basal and meal-related pattern with most prominent increments following breakfast, lunch, and evening meal, respectively. The mean concentrations of glycated insulin during the morning, afternoon, evening, and night-time periods were 24.4 +/- 2.5, 28.7 +/- 2.3, 31.1 +/- 2.1, and 26.2 +/- 1.5 pmol/L, respectively, giving significantly higher molar ratios of insulin:glycated insulin of 18.0:1, 14.2:1, and 12.7:1 compared with 7.01 at night (P
Resumo:
Several studies have provided compelling evidence implicating the Notch signalling pathway in diabetic nephropathy. Co-regulation of Notch signalling pathway genes with GREM1 has recently been demonstrated and several genes involved in the Notch pathway are differentially expressed in kidney biopsies from individuals with diabetic nephropathy. We assessed single-nucleotide polymorphisms (SNPs; n = 42) in four of these key genes (JAG1, HES1, NOTCH3 and ADAM10) for association with diabetic nephropathy using a case-control design.
Tag SNPs and potentially functional SNPs were genotyped using Sequenom or Taqman technologies in a total of 1371 individuals with type 1 diabetes (668 patients with nephropathy and 703 controls without nephropathy). Patients and controls were white and recruited from the UK and Ireland. Association analyses were performed using PLINK (http://pngu.mgh.harvard.edu/similar to purcell/plink/) and haplotype frequencies in patients and controls were compared. Adjustment for multiple testing was performed by permutation testing.
In analyses stratified by centre, we identified six SNPs, rs8708 and rs11699674 (JAG1), rs10423702 and rs1548555 (NOTCH3), rs2054096 and rs8027998 (ADAM10) as being associated with diabetic nephropathy before, but not after, adjustment for multiple testing. Haplotype and subgroup analysis according to duration of diabetes also failed to find an association with diabetic nephropathy.
Our results suggest that common variants in JAG1, HES1, NOTCH3 and ADAM10 are not strongly associated with diabetic nephropathy in type 1 diabetes among white individuals. Our findings, however, cannot entirely exclude these genes from involvement in the pathogenesis of diabetic nephropathy.
Resumo:
BACKGROUND: Advanced glycation endproducts (AGEs) are implicated in the pathogenesis of atherosclerotic vascular disease of diabetic and nondiabetic etiology. Recent research suggests that advanced glycation of ApoB contributes to the development of hyperlipidemia. AGE-specific receptors, expressed on vascular endothelium and mononuclear cells, may be involved in both the clearance of, and the inflammatory responses to AGEs. The aim of this study was to examine whether there is a relationship between serum AGE-ApoB and AGEs in arterial tissue of older normolipidemic nondiabetic patients with occlusive atherosclerotic disease, compared with age-matched and younger asymptomatic persons.
MATERIALS AND METHODS: Serum AGE-ApoB was measured by ELISA in 21 cardiac bypass patients. Furthermore, an AGE-specific monoclonal antibody, and polyclonal antibodies against anti-AGE-receptor (anti-AGE-R) 1 and 2 were used to explore the localization and distribution of AGEs and AGE-R immunoreactivity (IR) in arterial segments excised from these patients.
RESULTS: Serum AGE-ApoB levels were significantly elevated in the asymptomatic, older population, compared with those in young healthy persons (259 +/- 24 versus 180 +/- 21 AGE U/mg of ApoB, p < 0.01). Higher AGE-ApoB levels were observed in those patients with atherosclerosis (329 +/- 23 versus 259 +/- 24 AGE U/mg ApoB, p < 0.05). Comparisons of tissue AGE-collagen with serum AGE-ApoB levels showed a significant correlation (r = 0.707, p < 0.01). In early lesions, AGE-IR occurred mostly extracellularly. In fatty streaks and dense, cellular atheromatous lesions, AGE-IR was visible within lipid-containing smooth muscle cells and macrophages, while in late-stage, acellular plaques, AGE-IR occurred mostly extracellularly. AGE-R1 and -R2 were observed on vascular endothelial and smooth-muscle cells and on infiltrating mononuclear cells in the early-stage lesions, whereas in dense, late-stage plaques, they colocalized mostly with lipid-laden macrophages. On tissue sections, scoring of AGE-immunofluorescence correlated with tissue AGE and plasma AGE-ApoB.
CONCLUSIONS: (1) The correlation between arterial tissue AGEs and circulating AGE-ApoB suggests a causal link between AGE modification of lipoproteins and atherosclerosis. AGE-specific receptors may contribute to this process. (2) Serum AGE-ApoB may serve to predict atherosclerosis in asymptomatic patients.
Resumo:
Diabetic nephropathy (DN) is the primary cause of morbidity and mortality in patients with type 1 diabetes mellitus (T1DM) and affects about 30% of these patients. We have previously localized a DN locus on chromosome 3q with suggestive linkage in Finnish individuals. Linkage to this region has also been reported earlier by several other groups. To fine map this locus, we conducted a multistage case-control association study in T1DM patients, comprising 1822 cases with nephropathy and 1874 T1DM patients free of nephropathy, from Finland, Iceland, and the British Isles. At the screening stage, we genotyped 3072 tag SNPs, spanning a 28 Mb region, in 234 patients and 215 controls from Finland. SNPs that met the significance threshold of p
Resumo:
AIMS/HYPOTHESIS: Parental type 2 diabetes mellitus increases the risk of diabetic nephropathy in offspring with type 1 diabetes mellitus. Several single nucleotide polymorphisms (SNPs) that predispose to type 2 diabetes mellitus have recently been identified. It is, however, not known whether such SNPs also confer susceptibility to diabetic nephropathy in patients with type 1 diabetes mellitus. METHODS: We genotyped nine SNPs associated with type 2 diabetes mellitus in genome-wide association studies in the Finnish population, and tested for their association with diabetic nephropathy as well as with severe retinopathy and cardiovascular disease in 2,963 patients with type 1 diabetes mellitus. Replication of significant SNPs was sought in 2,980 patients from three other cohorts. RESULTS: In the discovery cohort, rs10811661 near gene CDKN2A/B was associated with diabetic nephropathy. The association remained after robust Bonferroni correction for the total number of tests performed in this study (OR 1.33 [95% CI 1.14, 1.56], p?=?0.00045, p (36tests)?=?0.016). In the meta-analysis, the combined result for diabetic nephropathy was significant, with a fixed effects p value of 0.011 (OR 1.15 [95% CI 1.02, 1.29]). The association was particularly strong when patients with end-stage renal disease were compared with controls (OR 1.35 [95% CI 1.13, 1.60], p?=?0.00038). The same SNP was also associated with severe retinopathy (OR 1.37 [95% CI 1.10, 1.69] p?=?0.0040), but the association did not remain after Bonferroni correction (p (36tests)?=?0.14). None of the other selected SNPs was associated with nephropathy, severe retinopathy or cardiovascular disease. CONCLUSIONS/INTERPRETATION: A SNP predisposing to type 2 diabetes mellitus, rs10811661 near CDKN2A/B, is associated with diabetic nephropathy in patients with type 1 diabetes mellitus.
Resumo:
Diabetic nephropathy (DN) affects about 30% of patients with type 1 diabetes (T1D) and contributes to serious morbidity and mortality. So far only the 3q21-q25 region has repeatedly been indicated as a susceptibility region for DN. The aim of this study was to search for new DN susceptibility loci in Finnish, Danish and French T1D families.
Resumo:
Type 1 diabetes (T1D) increases risk of the development of microvascular complications and cardiovascular disease (CVD). Dyslipidemia is a common risk factor in the pathogenesis of both CVD and diabetic nephropathy (DN), with CVD identified as the primary cause of death in patients with DN. In light of this commonality, we assessed single nucleotide polymorphisms (SNPs) in thirty-seven key genetic loci previously associated with dyslipidemia in a T1D cohort using a casecontrol design. SNPs (n = 53) were genotyped using Sequenom in 1467 individuals with T1D (718 cases with proteinuric nephropathy and 749 controls without nephropathy i.e. normal albumin excretion). Cases and controls were white and recruited from the UK and Ireland. Association analyses were performed using PLINK to compare allele frequencies in cases and controls. In a sensitivity analysis, samples from control individuals with reduced renal function (estimated glomerular filtration rate,60 ml/min/1.73 m2) were excluded. Correction for multiple testing was performed by permutation testing. A total of 1394 samples passed quality control filters. Following regression analysis adjusted by collection center, gender, duration of diabetes, and average HbA1c, two SNPs were significantly associated with DN. rs4420638 in the APOC1 region (odds ratio [OR] = 1.51; confidence intervals [CI]: 1.19–1.91; P = 0.001) and rs1532624 in CETP (OR = 0.82; CI: 0.69–0.99; P = 0.034); rs4420638 was also significantly associated in a sensitivity analysis (P = 0.016) together with rs7679 (P = 0.027). However, no association was significant following correction for multiple testing. Subgroup analysis of end-stage renal disease status failed to reveal any association. Our results suggest common variants associated with dyslipidemia are not strongly associated with DN in T1D among white individuals. Our findings, cannot entirely exclude these key genes which are central to the process of dyslipidemia, from involvement in DN pathogenesis as our study had limited power to detect variants of small effect size. Analysis in larger independent cohorts is required.
Resumo:
We tested the hypothesis that activation of the protective arm of the renin angiotensin system, the angiotensin-converting enzyme 2 (ACE2)/angiotensin-(1-7) [Ang-(1-7)]/Mas receptor axis, corrects the vasoreparative dysfunction typically seen in the CD34(+) cells isolated from diabetic individuals. Peripheral blood CD34(+) cells from patients with diabetes were compared with those of nondiabetic controls. Ang-(1-7) restored impaired migration and nitric oxide bioavailability/cGMP in response to stromal cell-derived factor and resulted in a decrease in NADPH oxidase activity. The survival and proliferation of CD34(+) cells from diabetic individuals were enhanced by Ang-(1-7) in a Mas/phosphatidylinositol 3-kinase (PI3K)/Akt-dependent manner. ACE2 expression was lower, and ACE2 activators xanthenone and diminazine aceturate were less effective in inducing the migration in cells from patients with diabetes compared with controls. Ang-(1-7) overexpression by lentiviral gene modification restored both the in vitro vasoreparative functions of diabetic cells and the in vivo homing efficiency to areas of ischemia. A cohort of patients who remained free of microvascular complications despite having a history of longstanding inadequate glycemic control had higher expression of ACE2/Mas mRNA than patients with diabetes with microvascular complications matched for age, sex, and glycemic control. Thus, ACE2/Ang-(1-7)\Mas pathway activation corrects existing diabetes-induced CD34(+) cell dysfunction and also confers protection from development of this dysfunction.
Resumo:
Diabetic nephropathy (DN) is a progressive fibrotic condition that may lead to end-stage renal disease and kidney failure. Transforming growth factor-ß1 and bone morphogenetic protein-7 (BMP7) have been shown to induce DN-like changes in the kidney and protect the kidney from such changes, respectively. Recent data identified insulin action at the level of the nephron as a crucial factor in the development and progression of DN. Insulin requires a family of insulin receptor substrate (IRS) proteins for its physiological effects, and many reports have highlighted the role of insulin and IRS proteins in kidney physiology and disease. Here, we observed IRS2 expression predominantly in the developing and adult kidney epithelium in mouse and human. BMP7 treatment of human kidney proximal tubule epithelial cells (HK-2 cells) increases IRS2 transcription. In addition, BMP7 treatment of HK-2 cells induces an electrophoretic shift in IRS2 migration on SDS/PAGE, and increased association with phosphatidylinositol-3-kinase, probably due to increased tyrosine/serine phosphorylation. In a cohort of DN patients with a range of chronic kidney disease severity, IRS2 mRNA levels were elevated approximately ninefold, with the majority of IRS2 staining evident in the kidney tubules in DN patients. These data show that IRS2 is expressed in the kidney epithelium and may play a role in the downstream protective events triggered by BMP7 in the kidney. The specific up-regulation of IRS2 in the kidney tubules of DN patients also indicates a novel role for IRS2 as a marker and/or mediator of human DN progression.
Resumo:
Microalbuminuria is a common diagnosis in the clinical care of patients with type 1 diabetes mellitus. Long-term outcomes after the development of microalbuminuria are variable.
Resumo:
To evaluate the dose-response relationship of lixisenatide (AVE0010), a glucagon-like peptide-1 (GLP-1) receptor agonist, in metformin-treated patients with Type 2 diabetes.