100 resultados para Denture (partial, removable)
Resumo:
Introduction: Chronic atypical neutrophilic dermatosis with lipodystrophy and elevated temperature (CANDLE) is an auto inflammatory syndrome caused by an autosomal recessive gene mutation. This very rare syndrome has been reported in only 14 patients worldwide. A number of clinical signs have been reported including joint contractures, muscle atrophy, microcytic anaemia, and panniculitis-induced childhood lipodystrophy. Further symptoms include recurrent fevers, purpuric skin lesions, periorbital erythema and failure to thrive. This is the first reported case of periodontal manifestations associated with CANDLE syndrome.
Case Presentation: An 11 year old boy was referred to Cork University Dental School and Hospital with evidence of severe periodontal destruction. The patient’s medical condition was managed in Great Ormond Street Children’s Hospital, London. The patient’s dental management included initial treatment to remove teeth of hopeless prognosis followed by prosthodontic rehabilitation using removable partial dentures. This was followed by further non-surgical periodontal treatment and maintenance. In the long term, the potential definitive restorative options, including dental implants, will be evaluated in discussion with the patient’s medical team.
Conclusion: Periodontitis as a manifestation of systemic disease is one of seven categories of periodontitis as defined by the American Academy of Periodontology 1999 classification system. A number of systemic diseases have been associated with advanced periodontal destruction including Diabetes Mellitus, Leukaemia and Papillon-Lefevre Syndrome. In the case described, treatment necessitated a multidisciplinary approach with input from medical and dental specialities for a young patient with severe periodontal destruction associated with CANDLE syndrome.
Resumo:
Objective: To compare caries incidence following two different tooth replacement strategies for partially dentate older patients; namely functionally orientated treatment according to the principles of the Shortened Dental Arch (SDA) and conventional treatment using Removable Partial Dentures (RPDs). Method:A randomised controlled clinical trial (RCT) was conducted of partially dentate patients aged 65 years and older. Patients were randomly allocated to two different treatment groups: the RPD group and the SDA group. Each member of the RPD group was restored to complete arches with cobalt-chromium RPDs used to replace missing teeth. Patients in the SDA group were restored to a shortened arch of 10 occluding pairs of natural and replacement teeth using adhesive bridgework. All of the operative treatment was completed by a single operator. Caries incidence was measured over a 2-year period following treatment intervention and recorded using the International Caries and Detection System (ICDAS). Result:In total, 89 patients completed the RCT (45 SDAs and 44 RPDs). Patients in the RPD group recorded a significantly higher incidence of new carious lesions (p<0.001) and recurrent carious lesions (p<0.001) compared to the SDA group. A mixed model of covariance (ANCOVA) revealed that treatment group (p<0.001) and co-morbidity (p<0.001) were significant predictors of caries incidence. Conclusion:Two years after provision of prosthodontic treatment there was a significantly higher incidence of new and recurrent caries lesions in subjects provided with RPDs compared with SDA treatment. This will have a significant impact on the ongoing maintenance costs for these two treatment groups.
Resumo:
Background: In a selective group of patients accelerated partial breast irradiation (APBI) might be applied after conservative breast surgery to reduce the amount of irradiated healthy tissue. The role of volumetric modulated arc therapy (VMAT) and voluntary moderately deep inspiration breath-hold (vmDIBH) techniques in further reducing irradiated healthy – especially heart – tissue is investigated.
Material and methods: For 37 partial breast planning target volumes (PTVs), three-dimensional conformal radiotherapy (3D-CRT) (3 – 5 coplanar or non-coplanar 6 and/or 10 MV beams) and VMAT (two partial 6 MV arcs) plans were made on CTs acquired in free-breathing (FB) and/or in vmDIBH. Dose-volume parameters for the PTV, heart, lungs, and breasts were compared.
Results: Better dose conformity was achieved with VMAT compared to 3D-CRT (conformity index 1.24 0.09 vs. 1.49 0.20). Non-PTV ipsilateral breast receiving 50% of the prescribed dose was on average reduced by 28% in VMAT plans compared to 3D-CRT plans. Mean heart dose (MHD) reduced from 2.0 (0.1 – 5.1) Gy in 3D-CRT(FB) to 0.6 (0.1 – 1.6) Gy in VMAT(vmDIBH). VMAT is benefi cial for MHD reduction if MHD with 3D-CRT exceeds 0.5Gy. Cardiac dose reduction as a result of VMAT increases with increasing initial MHD, and adding vmDIBH reduces the cardiac dose further. Mean dose to the ipsilateral lung decreased from 3.7 (0.7 – 8.7) to 1.8 (0.5 – 4.0) Gy with VMAT(vmDIBH) compared to 3D-CRT(FB). VMAT resulted in a slight increase in the contralateral breast dose (DMean ) always remaining 1.9 Gy).
Conclusions: For APBI patients, VMAT improves PTV dose conformity and delivers lower doses to the ipsilateral breast and lung compared to 3D-CRT. This goes at the cost of a slight but acceptable increase of the contralateral breast dose. VMAT reduces cardiac dose if MHD exceeds 0.5 Gy for 3D-CRT. Adding vmDIBH results in a further reduction of heart and ipsilateral lung dose.
Resumo:
Shoeprint evidence collected from crime scenes can play an important role in forensic investigations. Usually, the analysis of shoeprints is carried out manually and is based on human expertise and knowledge. As well as being error prone, such a manual process can also be time consuming; thus affecting the usability and suitability of shoeprint evidence in a court of law. Thus, an automatic system for classification and retrieval of shoeprints has the potential to be a valuable tool. This paper presents a solution for the automatic retrieval of shoeprints which is considerably more robust than existing solutions in the presence of geometric distortions such as scale, rotation and scale distortions. It addresses the issue of classifying partial shoeprints in the presence of rotation, scale and noise distortions and relies on the use of two local point-of-interest detectors whose matching scores are combined. In this work, multiscale Harris and Hessian detectors are used to select corners and blob-like structures in a scale-space representation for scale invariance, while Scale Invariant Feature Transform (SIFT) descriptor is employed to achieve rotation invariance. The proposed technique is based on combining the matching scores of the two detectors at the score level. Our evaluation has shown that it outperforms both detectors in most of our extended experiments when retrieving partial shoeprints with geometric distortions, and is clearly better than similar work published in the literature. We also demonstrate improved performance in the face of wear and tear. As matter of fact, whilst the proposed work outperforms similar algorithms in the literature, it is shown that achieving good retrieval performance is not constrained by acquiring a full print from a scene of crime as a partial print can still be used to attain comparable retrieval results to those of using the full print. This gives crime investigators more flexibility is choosing the parts of a print to search for in a database of footwear.
Resumo:
This paper proposes a new thermography-based maximum power point tracking (MPPT) scheme to address photovoltaic (PV) partial shading faults. Solar power generation utilizes a large number of PV cells connected in series and in parallel in an array, and that are physically distributed across a large field. When a PV module is faulted or partial shading occurs, the PV system sees a nonuniform distribution of generated electrical power and thermal profile, and the generation of multiple maximum power points (MPPs). If left untreated, this reduces the overall power generation and severe faults may propagate, resulting in damage to the system. In this paper, a thermal camera is employed for fault detection and a new MPPT scheme is developed to alter the operating point to match an optimized MPP. Extensive data mining is conducted on the images from the thermal camera in order to locate global MPPs. Based on this, a virtual MPPT is set out to find the global MPP. This can reduce MPPT time and be used to calculate the MPP reference voltage. Finally, the proposed methodology is experimentally implemented and validated by tests on a 600-W PV array.
Resumo:
We have obtained H$\alpha$ high spatial and time resolution observations of the upper solar chromosphere and supplemented these with multi-wavelength observations from the Solar Dynamic Observatory (SDO) and the {\it Hinode} ExtremeUltraviolet Imaging Spectrometer (EIS). The H$\alpha$ observations were conducted on 11 February 2012 with the Hydrogen-Alpha Rapid Dynamics Camera (HARDcam) instrument at the National Solar Observatory's Dunn Solar Telescope. Our H$\alpha$ observations found large downflows of chromospheric material returning from coronal heights following a failed prominence eruption. We have detected several large condensations ("blobs") returning to the solar surface at velocities of $\approx$200 km s$^{-1}$ in both H$\alpha$ and several SDO AIA band passes. The average derived size of these "blobs" in H$\alpha$ is 500 by 3000 km$^2$ in the directions perpendicular and parallel to the direction of travel, respectively. A comparison of our "blob" widths to those found from coronal rain, indicate there are additional smaller, unresolved "blobs" in agreement with previous studies and recent numerical simulations. Our observed velocities and decelerations of the "blobs" in both H$\alpha$ and SDO bands are less than those expected for gravitational free-fall and imply additional magnetic or gas pressure impeding the flow. We derived a kinetic energy $\approx$2 orders of magnitude lower for the main eruption than a typical CME, which may explain its partial nature.
Resumo:
Belief revision performs belief change on an agent’s beliefs when new evidence (either of the form of a propositional formula or of the form of a total pre-order on a set of interpretations) is received. Jeffrey’s rule is commonly used for revising probabilistic epistemic states when new information is probabilistically uncertain. In this paper, we propose a general epistemic revision framework where new evidence is of the form of a partial epistemic state. Our framework extends Jeffrey’s rule with uncertain inputs and covers well-known existing frameworks such as ordinal conditional function (OCF) or possibility theory. We then define a set of postulates that such revision operators shall satisfy and establish representation theorems to characterize those postulates. We show that these postulates reveal common characteristics of various existing revision strategies and are satisfied by OCF conditionalization, Jeffrey’s rule of conditioning and possibility conditionalization. Furthermore, when reducing to the belief revision situation, our postulates can induce Darwiche and Pearl’s postulates C1 and C2.
Resumo:
Belief revision studies strategies about how agents revise their belief states when receiving new evidence. Both in classical belief revision and in epistemic revision, a new input is either in the form of a (weighted) propositional formula or a total
pre-order (where the total pre-order is considered as a whole).
However, in some real-world applications, a new input can be a partial pre-order where each unit that constitutes the partial pre-order is important and should be considered individually. To address this issue, in this paper, we study how a partial preorder representing the prior epistemic state can be revised by another partial pre-order (the new input) from a different perspective, where the revision is conducted recursively on the individual units of partial pre-orders. We propose different revision operators (rules), dubbed the extension, match, inner and outer revision operators, from different revision points of view. We also analyze several properties for these operators.
Resumo:
Belief revision is the process that incorporates, in a consistent way,
a new piece of information, called input, into a belief base. When both belief
bases and inputs are propositional formulas, a set of natural and rational properties, known as AGM postulates, have been proposed to define genuine revision operations. This paper addresses the following important issue : How to revise a partially pre-ordered information (representing initial beliefs) with a new partially pre-ordered information (representing inputs) while preserving AGM postulates? We first provide a particular representation of partial pre-orders (called units) using the concept of closed sets of units. Then we restate AGM postulates in this framework by defining counterparts of the notions of logical entailment and logical consistency. In the second part of the paper, we provide some examples of revision operations that respect our set of postulates. We also prove that our revision methods extend well-known lexicographic revision and natural revision for both cases where the input is either a single propositional formula or a total pre-order.
Resumo:
Differential equations are often directly solvable by analytical means only in their one dimensional version. Partial differential equations are generally not solvable by analytical means in two and three dimensions, with the exception of few special cases. In all other cases, numerical approximation methods need to be utilized. One of the most popular methods is the finite element method. The main areas of focus, here, are the Poisson heat equation and the plate bending equation. The purpose of this paper is to provide a quick walkthrough of the various approaches that the authors followed in pursuit of creating optimal solvers, accelerated with the use of graphical processing units, and comparing them in terms of accuracy and time efficiency with existing or self-made non-accelerated solvers.
Impact of prosthodontic rehabilitation on the chewing efficiency of partially dentate older patients
Resumo:
Objectives: This study compared two tooth replacement strategies for partially dentate older patients namely; removable partial dentures (RPDs) and functionally orientated treatment based on the shortened dental arch (SDA) concept. Patients were compared in terms of chewing efficiency after prosthodontic rehabilitation. Methods: Chewing efficiency was assessed electronically by a two-colour gum-mixing test. Specimens were assembled from two different colours of chewing gums with a size of 30 x 18 x 3 mm. After participants chewed for 20 cycles, the gum was retrieved, flattened to a 1-mm-thick wafer, and digitized with a flatbed image scanner. The pixels of unmixed colour in the specimen were counted by means of Adobe Photoshop 2.0R software (Adobe Systems, San Jose, CA, USA), and the ratio to the pixels of the entire frame was computed. This ratio is called the Unmixed Fraction (UF). The more efficiently the specimen is chewed, the less unmixed colour remains, and the smaller the gum becomes. Consequently, a low unmixed fraction corresponds to good chewing efficiency. Results: 32 patients completed the chewing efficiency test (17 RPDs and 15 SDA). The mean UF recorded for the SDA group was not significantly different to that recorded for the RPD group (p>0.05, unpaired t-test). Conclusion: These results indicate that prosthodontic rehabilitation according to the principles of the SDA is equivalent to RPDs in terms of restoration of chewing ability for partially dentate older patients.
Resumo:
Objective: This study aimed to compare two different tooth replacement strategies for partially dentate older patients namely; removable partial dentures (RPDs) and functionally orientated treatment based on the shortened dental arch (SDA) concept. Method: 88 partially dentate older patients (mean age 69.4 years) completed a randomised controlled clinical trial. 43 patients received RPDs and 45 received functionally orientated treatment where resin bonded bridgework was used to provide 10 pairs of occluding contacts. Patients were followed for 1 year after treatment intervention. The impact of treatment on oral health-related quality of life (OHrQOL) and cost effectiveness were used as outcome measures. Each patient completed the short form of the Oral Health Impact Profile (OHIP-14) at baseline, 6 months and 1 year after treatment intervention. All costs involved in providing and maintaining each intervention were recorded including dental laboratory bills, materials and professional time. Result: Both the RPD (p=0.004) and the functionally orientated (p<0.001) treatment groups demonstrated statistically significant improvements in OHrQOL 1 year after treatment intervention. On average 9.4 visits were required to complete and maintain the RPDs over the 1 year period as compared to 5.3 visits for the functionally orientated group. The average laboratory cost for the RPDs was $537.45 per patient versus $367.89 for functionally orientated treatment. The cost of achieving the Minimally Important Difference of 5 scale points in OHIP-14 score with RPDs was $732.17. For the functionally orientated group the cost was $356.88. Therefore, functionally orientated treatment was more than twice as cost effective (1:2.05). Conclusion: For partially dentate older patients, functionally orientated treatment based on the SDA concept resulted in sustained, significant improvements in OHrQOL. Provision of functionally orientated treatment was also more than twice as cost effective compared to conventional treatment using RPDs.
Resumo:
Necessary and sufficient conditions for choice functions to be rational have been intensively studied in the past. However, in these attempts, a choice function is completely specified. That is, given any subset of options, called an issue, the best option over that issue is always known, whilst in real-world scenarios, it is very often that only a few choices are known instead of all. In this paper, we study partial choice functions and investigate necessary and sufficient rationality conditions for situations where only a few choices are known. We prove that our necessary and sufficient condition for partial choice functions boils down to the necessary and sufficient conditions for complete choice functions proposed in the literature. Choice functions have been instrumental in belief revision theory. That is, in most approaches to belief revision, the problem studied can simply be described as the choice of possible worlds compatible with the input information, given an agent’s prior belief state. The main effort has been to devise strategies in order to infer the agents revised belief state. Our study considers the converse problem: given a collection of input information items and their corresponding revision results (as provided by an agent), does there exist a rational revision operation used by the agent and a consistent belief state that may explain the observed results?
Resumo:
We present the Pan-STARRS1 discovery of the long-lived and blue transient PS1-11af, which was also detected by Galaxy Evolution Explorer with coordinated observations in the near-ultraviolet (NUV) band. PS1-11af is associated with the nucleus of an early type galaxy at redshift z = 0.4046 that exhibits no evidence for star formation or active galactic nucleus activity. Four epochs of spectroscopy reveal a pair of transient broad absorption features in the UV on otherwise featureless spectra. Despite the superficial similarity of these features to P-Cygni absorptions of supernovae (SNe), we conclude that PS1-11af is not consistent with the properties of known types of SNe. Blackbody fits to the spectral energy distribution are inconsistent with the cooling, expanding ejecta of a SN, and the velocities of the absorption features are too high to represent material in homologous expansion near a SN photosphere. However, the constant blue colors and slow evolution of the luminosity are similar to previous optically selected tidal disruption events (TDEs). The shape of the optical light curve is consistent with models for TDEs, but the minimum accreted mass necessary to power the observed luminosity is only 0.002 M, which points to a partial disruption model. A full disruption model predicts higher bolometric luminosities, which would require most of the radiation to be emitted in a separate component at high energies where we lack observations. In addition, the observed temperature is lower than that predicted by pure accretion disk models for TDEs and requires reprocessing to a constant, lower temperature. Three deep non-detections in the radio with the Very Large Array over the first two years after the event set strict limits on the production of any relativistic outflow comparable to Swift J1644+57, even if off-axis.