163 resultados para Cysteine proteases


Relevância:

10.00% 10.00%

Publicador:

Resumo:

An abundance of genetic, histopathological, and biochemical evidence has implicated the neuronal protein, alpha-synuclein (alpha-syn) as a key player in the development of several neurodegenerative diseases, the so-called synucleinopathies, of which Parkinson's disease (PD) is the most prevalent. Development of disease appears to be linked to events that increase the intracellular concentration of alpha-syn or cause its chemical modification, either of which can accelerate the rate at which it forms aggregates. Examples of such events include increased copy number of genes, decreased rate of degradation via the proteasome or other proteases, or altered forms of alpha-syn, such as truncations, missense mutations, or chemical modifications by oxidative reactions. Aggregated forms of the protein, especially newly formed soluble aggregates, are toxic to cells, so that one therapeutic strategy would be to reduce the rate at which such oligomerization occurs. We have therefore designed several peptides and also identified small molecules that can inhibit alpha-syn oligomerization and toxicity in vitro. These compounds could serve as lead compounds for the design of new drugs for the treatment of PD and related disorders in the future.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hyperglycaemia-induced oxidative stress may play a key role in the pathogenesis of diabetic vascular disease. The purpose of the present study was to determine the effects of glucose on levels of glutathione (a major intracellular antioxidant), the expression of gamma-glutamylcysteine synthetase (the rate-limiting enzyme in glutathione de novo synthesis) and DNA damage in human vascular smooth muscle cells in vitro. High glucose conditions and buthionine sulphoximine, an inhibitor of gamma-glutamylcysteine synthetase, reduced intracellular glutathione levels in vascular smooth muscle cells. This reduction was accompanied by a decrease in the mRNA expression of both subunits of gamma-glutamylcysteine synthetase as well as an increase in DNA damage. In high glucose conditions incubation of the vascular smooth muscle cells with alpha-lipoic acid and L-cystine restored glutathione levels. We suggest that the decrease in GSH levels seen in high glucose conditions is mediated by the availability of cysteine (rate-limiting substrate in de novo glutathione synthesis) and the gene expression of the gamma- glutamylcysteine synthetase enzyme. Glutathione depletion is associated with an increase in DNA damage, which can be reduced when glutathione levels are restored.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cysteine proteinases have been implicated in astrocytoma invasion. We recently demonstrated that cathepsin S (CatS) expression is up-regulated in astrocytomas and provided evidence for a potential role in astrocytoma invasion (Flannery et al., Am J Path 2003;163(1):175–82). We aimed to evaluate the significance of CatS in human astrocytoma progression and as a prognostic marker. Frozen tissue homogenates from 71 patients with astrocytomas and 3 normal brain specimens were subjected to ELISA analyses. Immunohistochemical analysis of CatS expression was performed on 126 paraffin-embedded tumour samples. Fifty-one astrocytoma cases were suitable for both frozen tissue and paraffin tissue analysis. ELISA revealed minimal expression of CatS in normal brain homogenates. CatS expression was increased in grade IV tumours whereas astrocytoma grades I–III exhibited lower values. Immunohistochemical analysis revealed a similar pattern of expression. Moreover, high-CatS immunohistochemical scores in glioblastomas were associated with significantly shorter survival (10 vs. 5 months, p = 0.014). With forced inclusion of patient age, radiation dose and Karnofsky score in the Cox multivariate model, CatS score was found to be an independent predictor of survival. CatS expression in astrocytomas is associated with tumour progression and poor outcome in glioblastomas. CatS may serve as a useful prognostic indicator and potential target for anti-invasive therapy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The secretion and activation of the major cathepsin L1 cysteine protease involved in the virulence of the helminth pathogen Fasciola hepatica was investigated. Only the fully processed and active mature enzyme can be detected in medium in which adult F. hepatica are cultured. However, immunocytochemical studies revealed that the inactive procathepsin L1 is packaged in secretory vesicles of epithelial cells that line the parasite gut. These observations suggest that processing and activation of procathepsin L1 occurs following secretion from these cells into the acidic gut lumen. Expression of the 37-kDa procathepsin L1 in Pichia pastoris showed that an intermolecular processing event within a conserved GXNXFXD motif in the propeptide generates an active 30-kDa intermediate form. Further activation of the enzyme was initiated by decreasing the pH to 5.0 and involved the progressive processing of the 37 and 30-kDa forms to other intermediates and finally to a fully mature 24.5 kDa cathepsin L with an additional 1 or 2 amino acids. An active site mutant procathepsin L, constructed by replacing the Cys26 with Gly26, failed to autoprocess. However, [Gly26]procathepsin L was processed by exogenous wild-type cathepsin L to a mature enzyme plus 10 amino acids attached to the N terminus. This exogenous processing occurred without the formation of a 30-kDa intermediate form. The results indicate that activation of procathepsin L1 by removal of the propeptide can occur by different pathways, and that this takes place within the parasite gut where the protease functions in food digestion and from where it is liberated as an active enzyme for additional extracorporeal roles.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This review focuses on the monophyletic group of animal RNA viruses united in the order Nidovirales. The order includes the distantly related coronaviruses, toroviruses, and roniviruses, which possess the largest known RNA genomes (from 26 to 32 kb) and will therefore be called ‘large’ nidoviruses in this review. They are compared with their arterivirus cousins, which also belong to the Nidovirales despite having a much smaller genome (13–16 kb). Common and unique features that have been identified for either large or all nidoviruses are outlined. These include the nidovirus genetic plan and genome diversity, the composition of the replicase machinery and virus particles, virus-specific accessory genes, the mechanisms of RNA and protein synthesis, and the origin and evolution of nidoviruses with small and large genomes. Nidoviruses employ single-stranded, polycistronic RNA genomes of positive polarity that direct the synthesis of the subunits of the replicative complex, including the RNA-dependent RNA polymerase and helicase. Replicase gene expression is under the principal control of a ribosomal frameshifting signal and a chymotrypsin-like protease, which is assisted by one or more papain-like proteases. A nested set of subgenomic RNAs is synthesized to express the 3'-proximal ORFs that encode most conserved structural proteins and, in some large nidoviruses, also diverse accessory proteins that may promote virus adaptation to specific hosts. The replicase machinery includes a set of RNA-processing enzymes some of which are unique for either all or large nidoviruses. The acquisition of these enzymes may have improved the low fidelity of RNA replication to allow genome expansion and give rise to the ancestors of small and, subsequently, large nidoviruses.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The replicase polyproteins, pp1a and pp1ab, of porcine Transmissible gastroenteritis virus (TGEV) have been predicted to be cleaved by viral proteases into 16 non-structural proteins (nsp). Here, enzymic activities residing in the amino-proximal region of nsp3, the largest TGEV replicase processing product, were characterized. It was shown, by in vitro translation experiments and protein sequencing, that the papain-like protease 1, PL1pro, but not a mutant derivative containing a substitution of the presumed active-site nucleophile, Cys1093, cleaves the nsp2|nsp3 site at 879Gly|Gly880. By using an antiserum raised against the pp1a/pp1ab residues 526–713, the upstream processing product, nsp2, was identified as an 85 kDa protein in TGEV-infected cells. Furthermore, PL1pro was confirmed to be flanked at its C terminus by a domain (called X) that mediates ADP-ribose 1''-phosphatase activity. Expression and characterization of a range of bacterially expressed forms of this enzyme suggest that the active X domain comprises pp1a/pp1ab residues Asp1320–Ser1486.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bradykinins and related peptides (BRPs) occur in the defensive skin secretions of many amphibians. Here we report the structures of BRPs and their corresponding biosynthetic precursor cDNAs from the Chinese brown frog, Rana chensinensis, and the North American leopard frog, Lithobates pipiens. R. chensinensis skin contained four transcripts each encoding a different kininogen whose organizations and spectrum of encoded BRPs were similar to those reported for the pickerel frog, Lithobates palustris. In contrast, from L. pipiens, a single skin kininogen was cloned whose structural organization and spectrum of mature BRPs were similar to those reported for the Chinese piebald odorous frog, Huia schmackeri. These data also implied that the endogenous precursor processing proteases in each species pair have identical site-directed specificities, which in part may be dictated by the primary structures of encoded BRPs. Thus the spectra of skin BRPs and the organization of their biosynthetic precursors are not consistent with recent taxonomy. The natural selective pressures that mould the primary structures of amphibian skin secretion peptides are thought to be related to the spectrum of predators encountered within their habitats. Thus similarities and differences in skin bradykinins may be reflective of predator spectra rather than indicative of species relatedness.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Eppin has two potential protease inhibitory domains: a whey acid protein or four disulfide core domain and a Kunitz domain. The protein is also reported to have antibacterial activity against Gram-negative bacteria. Eppin and its whey acid protein and Kunitz domains were expressed in Escherichia coli and their ability to inhibit proteases and kill bacteria compared. The Kunitz domain inhibits elastase (EC 3.4.21.37) to a similar extent as intact eppin, whereas the whey acid protein domain has no such activity. None of these fragments inhibits trypsin (EC 3.4.21.4) or chymotrypsin (EC 3.4.21.1) at the concentrations tested. In a colony forming unit assay, both domains have some antibacterial activity against E. coli, but this was not to the same degree as intact eppin or the two domains together. When bacterial respiratory electron transport was measured using a 2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide assay, eppin and its domains caused an increase in the rate of respiration. This suggests that the mechanism of cell killing may be partly through the permeablization of the bacterial inner membrane, resulting in uncoupling of respiratory electron transport and consequent collapse of the proton motive force. Thus, we conclude that although both of eppin’s domains are involved in the protein’s antibacterial activity, only the Kunitz domain is required for selective protease inhibition.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A melphalan-resistant variant (Roswell Park Memorial Institute (RPMI)-2650M1) and a paclitaxel-resistant variant (RPMI-1650Tx) of the drug-sensitive human nasal carcinoma cell line, RPMI-2650. were established. The multidrug resistance (MDR) phenotype in the RPMI-2650Tx appeared to be P-glycoprotein (PgP)-mediated. Overexpression of multidrug resistant protein (MRP) family members was observed in the RPMI-2650M1 cells, which were also much more invasive in vitro than the parental cell line or the paclitaxel-resistant variant. Increased expression of alpha (2), alpha (5), alpha (6), beta (1) and beta (4) integrin subunits, decreased expression of alpha (4) integrin subunit, stronger adhesion to collagen type IV, laminin, fibronectin and matrigel, increased expression of MMP-2 and MMP-9 and significant motility compared with the parental cells were observed, along with a high invasiveness in the RPMI-7650M1 cells. Decreased expression of the alpha (2) integrin subunit, decreased attachment to collagen type IV, absence of cytokeratin 18 expression, no detectable expression of gelatin-degrading proteases and poor motility may be associated with the non-invasiveness of the RPMI-2650Tx variant. These results suggest that melphalan exposure can result in not only a MDR phenotype. but could also make cancer cells more invasive, whereas paclitaxel exposure resulted in MDR without increasing the in vitro invasiveness in the RPMI-2650 cells. (C) 2001 Elsevier Science Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: The treatment of solid tumours and angiogenic ocular diseases by photodynamic therapy (PDT) requires the injection of a photosensitiser (PS) to destroy target cells through a combination of visible light irradiation and molecular oxygen. There is currently great interest in the development of efficient and specific carrier delivery platforms for systemic PDT. Objective: This article aims to review recent developments in systemic carrier delivery platforms for PDT, with an emphasis on target specificity. Methods: Recent publications, spanning the last five years, concerning delivery carrier platforms for systemic PDT were reviewed, including PS conjugates, dendrimers, micelles, liposomes and nanoparticles. Results/conclusion: PS conjugates and supramolecular delivery platforms can improve PDT selectivity by exploiting cellular and physiological specificities of the targeted tissue. Overexpression of receptors in cancer and angiogenic endothelial cells allows their targeting by affinity-based moieties for the selective uptake of PS conjugates and encapsulating delivery carriers, while the abnormal tumour neovascularisation induces a specific accumulation of heavy weighted PS carriers by enhanced permeability and retention (EPR) effect. in addition, polymeric prodrug delivery platforms triggered by the acidic nature of the tumour environment or the expression of proteases can be designed. Promising results obtained with recent systemic carrier platforms will, in due course, be translated into the clinic for highly efficient and selective PDT protocols.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The cysteine protease cathepsin S (CatS) is involved in the pathogenesis of autoimmune disorders, atherosclerosis, and obesity. Therefore, it represents a promising pharmacological target for drug development. We generated ligand-based and structure-based pharmacophore models for noncovalent and covalent CatS inhibitors to perform virtual high-throughput screening of chemical databases in order to discover novel scaffolds for CatS inhibitors. An in vitro evaluation of the resulting 15 structures revealed seven CatS inhibitors with kinetic constants in the low micromolar range. These compounds can be subjected to further chemical modifications to obtain drugs for the treatment of autoimmune disorders and atherosclerosis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chronic fibrosis represents the final common pathway in progressive renal disease. Myofibroblasts deposit the constituents of renal scar, thus crippling renal function. It has recently emerged that an important source of these pivotal effector cells is the injured renal epithelium. This review concentrates on the process of epithelial-mesenchymal transition (EMT) and its regulation. The role of the developmental gene, gremlin, which is reactivated in adult renal disease, is the subject of particular focus. This member of the cysteine knot protein superfamily is critical to the process of nephrogenesis but quiescent in normal adult kidney. There is increasing evidence that gremlin expression reactivates in diabetic nephropathy, and in the diseased fibrotic kidney per se. Known to antagonize members of the bone morphogenic protein (BMP) family, gremlin may also act downstream of TGF-beta in induction of EMT. An increased understanding of the extracellular modulation of EMT and, in particular, of the gremlin-BMP axis may result in strategies that can halt or reverse the devastating progression of chronic renal fibrosis. Copyright (c) 2006 S. Karger AG, Basel.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Neutrophil elastase (NE) activity is increased in lung diseases such as a1-antitrypsin (A1AT) deficiency and pneumonia. It has recently been shown to induce expression of cathepsin B and matrix metalloprotease 2 (MMP-2) in vitro and in a mouse model. It is postulated that increased cathepsin B and MMP-2 in acute and chronic lung diseases result from high levels of extracellular NE and that expression of these proteases could be inhibited by A1AT augmentation therapy.

Methods: Cathepsin and MMP activities were assessed in bronchoalveolar lavage (BAL) fluid from patients with A1AT deficiency, pneumonia and control subjects. Macrophages were exposed to BAL fluid rich in free NE from patients with pneumonia following pretreatment with A1AT. MMP-2, cathepsin B, secretory leucoprotease inhibitor (SLPI) and lactoferrin levels were determined in BAL fluid from A1AT-deficient patients before and after aerosolisation of A1AT.

Results: BAL fluid from both patients with pneumonia and those with A1AT deficiency containing free NE had increased cathepsin B and MMP-2 activities compared with BAL fluid from healthy volunteers. The addition of A1AT to BAL fluid from patients with pneumonia greatly reduced NE-induced cathepsin B and MMP-2 expression in macrophages in vitro. A1AT augmentation therapy to A1AT-deficient individuals also reduced cathepsin B and MMP-2 activity in BAL fluid in vivo. Furthermore, A1AT-deficient patients had higher levels of SLPI and lactoferrin after A1AT augmentation therapy.

Conclusion: These findings suggest a novel role for A1AT inhibition of NE-induced upregulation of MMP and cathepsin expression both in vitro and in vivo.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Secretory leukocyte protease inhibitor (SLPI) is an endogenous serine protease inhibitor that protects the lungs from excessive tissue damage caused by leukocyte proteases released during inflammation. Recombinant SLPI (rSLPI) has shown potential as a treatment for inflammatory lung conditions. To date, its clinical application has been limited by rapid enzymatic cleavage by cathepsins and rapid clearance from the lungs after inhalation. In this study, rSLPI was encapsulated in 1,2-Dioleoyl-sn-Glycero-3-[Phospho-L-Serine] : Cholesterol (DOPS : Chol) liposomes for inhalation. Incubation of rSLPI with cathepsin L leads to complete loss of activity while encapsulation of rSLPI in DOPS : Chol liposomes retained 92.6 of its activity after challenge with cathepsin L. rSLPI-loaded liposomes were aerosolized efficiently using a standard nebulizer with a minimal loss of activity and stability. This formulation was biocompatible and encapsulation did not appear to diminish access to intracellular sites of action in in vitro cell culture studies. Liposome encapsulation of rSLPI therefore improves stability and potentially reduces the level and frequency of dosing required for therapeutic effect after inhalation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose: Cathepsin S is a cysteine protease that promotes the invasion of tumor and endothelial cells during cancer progression. Here we investigated the potential to target cathepsin S using an antagonistic antibody, Fsn0503, to block these tumorigenic effects.
Experimental Design: A panel of monoclonal antibodies was raised to human cathepsin S. The effects of a selected antibody were subsequently determined using invasion and proteolysis assays. Endothelial cell tube formation and aorta sprouting assays were done to examine antiangiogenic effects. In vivo effects were also evaluated using HCT116 xenograft studies.
Results: A selected cathepsin S antibody, Fsn0503, significantly blocked invasion of a range of tumor cell lines, most significantly HCT116 colorectal carcinoma cells, through inhibition of extracellular cathepsin S–mediated proteolysis. We subsequently found enhanced expression of cathepsin S in colorectal adenocarcinoma biopsies when compared with normal colon tissue. Moreover, Fsn0503 blocked endothelial cell capillary tube formation and aortic microvascular sprouting. We further showed that administration of Fsn0503 resulted in inhibition of tumor growth and neovascularization of HCT116 xenograft tumors.
Conclusions: These results show that blocking the invasive and proangiogenic effects of cathepsin S with antibody inhibitors may have therapeutic utility upon further preclinical and clinical evaluation.