78 resultados para Crystalline degree
Resumo:
Social networks generally display a positively skewed degree distribution and higher values for clustering coefficient and degree assortativity than would be expected from the degree sequence. For some types of simulation studies, these properties need to be varied in the artificial networks over which simulations are to be conducted. Various algorithms to generate networks have been described in the literature but their ability to control all three of these network properties is limited. We introduce a spatially constructed algorithm that generates networks with constrained but arbitrary degree distribution, clustering coefficient and assortativity. Both a general approach and specific implementation are presented. The specific implementation is validated and used to generate networks with a constrained but broad range of property values. © Copyright JASSS.
Resumo:
Degree distribution is a fundamental property of networks. While mean degree provides a standard measure of scale, there are several commonly used shape measures. Widespread use of a single shape measure would enable comparisons between networks and facilitate investigations about the relationship between degree distribution properties and other network features. This paper describes five candidate measures of heterogeneity and recommends the Gini coefficient. It has theoretical advantages over many of the previously proposed measures, is meaningful for the broad range of distribution shapes seen in different types of networks, and has several accessible interpretations. While this paper focusses on degree, the distribution of other node based network properties could also be described with Gini coefficients.