78 resultados para Computer-Aided Engineering
Resumo:
New techniques are presented for using the medial axis to generate decompositions on which high quality block-structured meshes with well-placed mesh singularities can be generated. Established medial-axis-based meshing algorithms are effective for some geometries, but in general, they do not produce the most favourable decompositions, particularly when there are geometric concavities. This new approach uses both the topological and geometric information in the medial axis to establish a valid and effective arrangement of mesh singularities for any 2-D surface. It deals with concavities effectively and finds solutions that are most appropriate to the geometric shapes. Resulting meshes are shown for a number of example models.
Resumo:
PURPOSE: This systematic review aimed to report and explore the survival of dental veneers constructed from non-feldspathic porcelain over 5 and 10 years.
MATERIALS AND METHODS: A total of 4,294 articles were identified through a systematic search involving all databases in the Cochrane Library, MEDLINE (OVID), EMBASE, Web of Knowledge, specific journals (hand-search), conference proceedings, clinical trials registers, and collegiate contacts. Articles, abstracts, and gray literature were sought by two independent researchers. There were no language limitations. One hundred sixteen studies were identified for full-text assessment, with 10 included in the analysis (5 qualitative, 5 quantitative). Study characteristics and survival (Kaplan-Meier estimated cumulative survival and 95% confidence interval [CI]) were extracted or recalculated. A failed veneer was one which required an intervention that disrupted the original marginal integrity, had been partially or completely lost, or had lost retention more than twice. A meta-analysis and sensitivity analysis of Empress veneers was completed, with an assessment of statistical heterogeneity and publication bias. Clinical heterogeneity was explored for results of all veneering materials from included studies.
RESULTS: Within the 10 studies, veneers were fabricated with IPS Empress, IPS Empress 2, Cerinate, and Cerec computer-aided design/computer-assisted manufacture (CAD/CAM) materials VITA Mark I, VITA Mark II, Ivoclar ProCad. The meta-analysis showed the pooled estimate for Empress veneers to be 92.4% (95% CI: 89.8% to 95.0%) for 5-year survival and 66% to 94% (95% CI: 55% to 99%) for 10 years. Data regarding other non-feldspathic porcelain materials were lacking, with only a single study each reporting outcomes for Empress 2, Cerinate, and various Cerec porcelains over 5 years. The sensitivity analysis showed data from one study had an influencing and stabilizing effect on the 5-year pooled estimate.
CONCLUSION: The long-term outcome (> 5 years) of non-feldspathic porcelain veneers is sparsely reported in the literature. This systematic review indicates that the 5-year cumulative estimated survival for etchable non-feldspathic porcelain veneers is over 90%. Outcomes may prove clinically acceptable with time, but evidence remains lacking and the use of these materials for veneers remains experimental.
Resumo:
The reciprocal interaction between cancer cells and the tissue-specific stroma is critical for primary and metastatic tumor growth progression. Prostate cancer cells colonize preferentially bone (osteotropism), where they alter the physiological balance between osteoblast-mediated bone formation and osteoclast-mediated bone resorption, and elicit prevalently an osteoblastic response (osteoinduction). The molecular cues provided by osteoblasts for the survival and growth of bone metastatic prostate cancer cells are largely unknown. We exploited the sufficient divergence between human and mouse RNA sequences together with redefinition of highly species-specific gene arrays by computer-aided and experimental exclusion of cross-hybridizing oligonucleotide probes. This strategy allowed the dissection of the stroma (mouse) from the cancer cell (human) transcriptome in bone metastasis xenograft models of human osteoinductive prostate cancer cells (VCaP and C4-2B). As a result, we generated the osteoblastic bone metastasis-associated stroma transcriptome (OB-BMST). Subtraction of genes shared by inflammation, wound healing and desmoplastic responses, and by the tissue type-independent stroma responses to a variety of non-osteotropic and osteotropic primary cancers generated a curated gene signature ("Core" OB-BMST) putatively representing the bone marrow/bone-specific stroma response to prostate cancer-induced, osteoblastic bone metastasis. The expression pattern of three representative Core OB-BMST genes (PTN, EPHA3 and FSCN1) seems to confirm the bone specificity of this response. A robust induction of genes involved in osteogenesis and angiogenesis dominates both the OB-BMST and Core OB-BMST. This translates in an amplification of hematopoietic and, remarkably, prostate epithelial stem cell niche components that may function as a self-reinforcing bone metastatic niche providing a growth support specific for osteoinductive prostate cancer cells. The induction of this combinatorial stem cell niche is a novel mechanism that may also explain cancer cell osteotropism and local interference with hematopoiesis (myelophthisis). Accordingly, these stem cell niche components may represent innovative therapeutic targets and/or serum biomarkers in osteoblastic bone metastasis.