126 resultados para Compact Dwarf Galaxies


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The light curve of PA-99-N2, one of the recently announced microlensing candidates toward M31, shows small deviations from the standard Paczynski form. We explore a number of possible explanations, including correlations with the seeing, the parallax effect, and a binary lens. We find that the observations are consistent with an unresolved red giant branch or asymptotic giant branch star in M31 being microlensed by a binary lens. We find that the best-fit binary lens mass ratio is similar to1.2x10(-2), which is one of the most extreme values found for a binary lens so far. If both the source and lens lie in the M31 disk, then the standard M31 model predicts the probable mass range of the system to be 0.02-3.6 M-circle dot (95% confidence limit). In this scenario, the mass of the secondary component is therefore likely to be below the hydrogen-burning limit. On the other hand, if a compact halo object in M31 is lensing a disk or spheroid source, then the total lens mass is likely to lie between 0.09 and 32 M-circle dot, which is consistent with the primary being a stellar remnant and the secondary being a low-mass star or brown dwarf. The optical depth (or, alternatively, the differential rate) along the line of sight toward the event indicates that a halo lens is more likely than a stellar lens, provided that dark compact objects comprise no less than 15% (or 5%) of halos.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have obtained the first high-resolution spectra of individual stars in the dwarf irregular galaxy NGC 6822. The spectra of the two A-type supergiants were obtained at the Very Large Telescope and Keck Observatories, using the Ultraviolet-Visual Echelle Spectrograph and the High Resolution Echelle Spectrometer, respectively. A detailed model atmospheres analysis has been used to determine their atmospheric parameters and elemental abundances. The mean iron abundance from these two stars is [[Fe/H]] = -0.49 +/- 0.22 (+/- 0.21),(6) with Cr yielding a similar underabundance, [[Cr/H]] = -0.50 +/- 0.20 (+/- 0.16). This confirms that NGC 6822 has a metallicity that is slightly higher than that of the SMC and is the first determination of the present-day iron group abundances in NGC 6822. The mean stellar oxygen abundance, 12 + log (O/H) = 8.36 +/- 0.19 (+/- 0.21), is in good agreement with the nebular oxygen results. Oxygen has the same underabundance as iron, [[O/ Fe]] = + 0.02 +/- 0.20 (+/- 0.21). This O/Fe ratio is very similar to that seen in the Magellanic Clouds, which supports the picture that chemical evolution occurs more slowly in these lower mass galaxies, although the O/Fe ratio is also consistent with that observed in comparatively metal-poor stars in the Galactic disk. Combining all of the available abundance observations for NGC 6822 shows that there is no trend in abundance with galactocentric distance. However, a subset of the highest quality data is consistent with a radial abundance gradient. More high-quality stellar and nebular observations are needed to confirm this intriguing possibility.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

White dwarfs are the remnant cores of stars that initially had masses of less than 8 solar masses. They cool gradually over billions of years, and have been suggested(1,2) to make up much of the 'dark matter' in the halo of the Milky way. But extremely cool white dwarfs have proved difficult to detect, owing to both their faintness and their anticipated similarity in colour to other classes of dwarf stars. Recent improved models(3-5) indicate that white dwarfs are much more blue than previously supposed, suggesting that the earlier searches may have been looking for the wrong kinds of objects. Here we report an infrared spectrum of an extremely cool white dwarf that is consistent with the new models. We determine the star's temperature to be 3,500 +/- 200 K, making it the coolest known white dwarf. The kinematics of this star indicate that it is in the halo of the Milky Way, and the density of such objects implied by the serendipitous discovery of this star is consistent with white dwarfs dominating the dark matter in the halo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Half hour exposures using the ESO VLT/FORS1 combination at Paranal in Chile have allowed us to obtain spectra for three B supergiants in the dwarf irregular galaxy NGC 6822. The spectra have been analysed using non-LTE techniques and temperatures, gravities, helium content and abundances have been obtained. Overall the metallicity of NGC 6822 is found to lie between that of the LMC and of the SMC, in agreement with previous observations of H II regions and in contrast to the earlier findings of Massey et al. (1995). The analysis of H-alpha yields estimates of the mass-loss rates and wind momenta. These results demonstrate that significantly longer exposures with the same instruments will allow us to perform quantitative spectroscopy of blue supergiants in galaxies far beyond the Local Group.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a parallax measurement for the very cool degenerate WD 0346+246, the serendipitous discovery of which was reported by Hambly et al, We find an absolute parallax of 36 +/- 5 mas, yielding a distance estimate of 28 +/- 4pc. The resulting absolute visual magnitude of the object is M-V = 16.8 +/- 0.3, making it the second-lowest luminosity white dwarf currently known. We use the distance estimate and measured proper motion to show that the object has kinematics consistent with membership of the Galactic halo. WD 0346+246 is therefore by far the coolest and least luminous of only a handful of plausible halo white dwarf candidates. As such, the object has relevance to the ongoing debate concerning the results of microlensing experiments and the nature of any baryonic dark matter component to the Galactic halo residing in stellar remnants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A linear array of n calcite crystals is shown to allow the generation of a high contrast (> 10: 1) train of 2(n) high energy (> 100 mu J) pulses from a single ultrafast laser pulse. Advantage is taken of the pulse-splitting properties of a single birefringent crystal, where an incident laser pulse can be split into two pulses with orthogonal polarizations and equal intensity, separated temporally in proportion to the thickness of the crystal traversed and the difference in refractive indices of the two optic axes. In the work presented here an array of seven calcite crystals of sequentially doubled thickness is used to produce a train of 128 pulses, each of femtosecond duration. Readily versatile properties such as the number of pulses in the train and variable mark-space ratio are realized from such a setup. (c) 2007 Optical Society of America

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The possibility of using high-intensity laser-produced plasmas as a source of energetic ions for heavy ion accelerators is addressed. Experiments have shown that neon ions greater than 6 MeV can be produced from gas jet plasmas, and well-collimated proton beams greater than 20 MeV have been produced from high-intensity Laser solid interactions. The proton beams from the back of thin targets appear to be more collimated and reproducible than are high-energy ions generated in the ablated plasma at the front of the target and may be more suitable for ion injection applications. Lead ions have been produced at energies up to 430 MeV.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report observations of the dwarf star e Eri (K2V) made with the Space Telescope Imaging Spectrograph (STIS) on the Hubble Space Telescope. The high sensitivity of the STIS instrument has allowed us to detect the magnetic dipole transitions of Fe XII at 1242.00 and 1349 38 Å for the first time in a star other than the Sun. The width of the stronger line at 1242.00 Å has also been measured; such measurements are not possible for the permitted lines of Fe XII in the extreme-ultraviolet. To within the accuracy of the measurements the N v and the Fe XII lines occur at their rest wavelengths. Electron densities and linewidths have been measured from other transition region lines. Together, these can be used to investigate the non-thermal energy flux in the lower and upper transition regions, which is useful in constraining possible heating processes. The Fe XII lines are also present in archival STIS spectra of other G/K-type dwarfs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the most important questions regarding the progenitor systems of Type Ia supernovae (SNe Ia) is whether mergers of two white dwarfs can lead to explosions that reproduce observations of normal events. Here we present a fully three-dimensional simulation of a violent merger of two carbon-oxygen white dwarfs with masses of 0.9 M and 1.1 M combining very high resolution and exact initial conditions. A well-tested combination of codes is used to study the system. We start with the dynamical inspiral phase and follow the subsequent thermonuclear explosion under the plausible assumption that a detonation forms in the process of merging. We then perform detailed nucleosynthesis calculations and radiative transfer simulations to predict synthetic observables from the homologously expanding supernova ejecta. We find that synthetic color light curves of our merger, which produces about 0.62 M of Ni, show good agreement with those observed for normal SNe Ia in all wave bands from U to K. Line velocities in synthetic spectra around maximum light also agree well with observations. We conclude that violent mergers of massive white dwarfs can closely resemble normal SNe Ia. Therefore, depending on the number of such massive systems available these mergers may contribute at least a small fraction to the observed population of normal SNe Ia. © 2012 The American Astronomical Society. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the brightness distribution expected for thermonuclear explosions that might result from the ignition of a detonation during the violent merger of white dwarf (WD) binaries. Violent WD mergers are a subclass of the canonical double degenerate scenario where two carbon-oxygen (CO) WDs merge when the larger WD fills its Roche lobe. Determining their brightness distribution is critical for evaluating whether such an explosion model could be responsible for a significant fraction of the observed population of Type Ia supernovae (SNe Ia). We argue that the brightness of an explosion realized via the violent merger model is mainly determined by the mass of Ni produced in the detonation of the primary COWD. To quantify this link, we use a set of sub-Chandrasekhar mass WD detonation models to derive a relationship between primary WD mass (m) and expected peak bolometric brightness (M). We use this m-M relationship to convert the masses of merging primary WDs from binary population models to a predicted distribution of explosion brightness. We also investigate the sensitivity of our results to assumptions about the conditions required to realize a detonation during violent mergers ofWDs. We find a striking similarity between the shape of our theoretical peak-magnitude distribution and that observed for SNe Ia: our model produces a M distribution that roughly covers the range and matches the shape of the one observed for SNe Ia. However, this agreement hinges on a particular phase of mass accretion during binary evolution: the primary WD gains ~0.15-0.35M? from a slightly evolved helium star companion. In our standard binary evolution model, such an accretion phase is predicted to occur for about 43 per cent of all binary systems that ultimately give rise to binary CO WD mergers. We also find that with high probability, violent WD mergers involving the most massive primaries (?1.3M?, which should produce bright SNe) have delay times ?500 Myr. © 2012 The Authors. Published by Oxford University Press on behalf of the Royal Astronomical Society.