76 resultados para Cloud cover
Filtro por publicador
- JISC Information Environment Repository (21)
- Repository Napier (1)
- Abertay Research Collections - Abertay University’s repository (1)
- Aberystwyth University Repository - Reino Unido (1)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (1)
- Andina Digital - Repositorio UASB-Digital - Universidade Andina Simón Bolívar (2)
- Aquatic Commons (2)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (3)
- Archive of European Integration (2)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (4)
- Aston University Research Archive (1)
- Avian Conservation and Ecology - Eletronic Cientific Hournal - Écologie et conservation des oiseaux: (4)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (7)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (7)
- Boston University Digital Common (4)
- Brock University, Canada (8)
- CaltechTHESIS (5)
- Cambridge University Engineering Department Publications Database (22)
- CentAUR: Central Archive University of Reading - UK (227)
- Center for Jewish History Digital Collections (11)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (19)
- CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal (1)
- Cochin University of Science & Technology (CUSAT), India (2)
- CORA - Cork Open Research Archive - University College Cork - Ireland (9)
- Dalarna University College Electronic Archive (1)
- Department of Computer Science E-Repository - King's College London, Strand, London (8)
- Digital Archives@Colby (3)
- Digital Commons - Michigan Tech (2)
- Digital Repository at Iowa State University (1)
- DigitalCommons - The University of Maine Research (1)
- DRUM (Digital Repository at the University of Maryland) (1)
- Duke University (1)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (7)
- Gallica, Bibliotheque Numerique - Bibliothèque nationale de France (French National Library) (BnF), France (68)
- Greenwich Academic Literature Archive - UK (2)
- Helda - Digital Repository of University of Helsinki (23)
- Indian Institute of Science - Bangalore - Índia (43)
- Instituto Politécnico do Porto, Portugal (5)
- Massachusetts Institute of Technology (1)
- Ministerio de Cultura, Spain (1)
- National Center for Biotechnology Information - NCBI (2)
- Open University Netherlands (1)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (7)
- Publishing Network for Geoscientific & Environmental Data (164)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (76)
- Queensland University of Technology - ePrints Archive (80)
- Repositório Científico da Universidade de Évora - Portugal (3)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (2)
- Repositório Institucional da Universidade de Aveiro - Portugal (1)
- Repositório Institucional da Universidade de Brasília (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (9)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (6)
- SAPIENTIA - Universidade do Algarve - Portugal (1)
- Universidad Politécnica de Madrid (1)
- Universidade Complutense de Madrid (1)
- Universidade Federal do Pará (1)
- Universidade Federal do Rio Grande do Norte (UFRN) (2)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (3)
- Université de Montréal, Canada (3)
- University of Michigan (4)
- University of Southampton, United Kingdom (6)
- University of Washington (3)
- WestminsterResearch - UK (5)
Resumo:
Scheduling jobs with deadlines, each of which defines the latest time that a job must be completed, can be challenging on the cloud due to incurred costs and unpredictable performance. This problem is further complicated when there is not enough information to effectively schedule a job such that its deadline is satisfied, and the cost is minimised. In this paper, we present an approach to schedule jobs, whose performance are unknown before execution, with deadlines on the cloud. By performing a sampling phase to collect the necessary information about those jobs, our approach delivers the scheduling decision within 10% cost and 16% violation rate when compared to the ideal setting, which has complete knowledge about each of the jobs from the beginning. It is noted that our proposed algorithm outperforms existing approaches, which use a fixed amount of resources by reducing the violation cost by at least two times.