86 resultados para Circular letters
Resumo:
A new class of polarizing surface is proposed that in a given frequency band can reflect incident linearly polarized waves with circular polarization (CP) while at other frequencies is transparent allowing incident waves to transmit unaffected. The proposed structure consists of two parallel anisotropic frequency selective surfaces (FSSs) that independently interact with TE or TM waves, respectively. The FSSs are designed to, respectively, transmit TE and TM waves within the same transmission frequency range, so that the combined structure is transparent to all polarizations in this band. Likewise, the two arrays are designed to, respectively, reflect TE and TM incident waves in a common reflection band, so that all polarizations are fully reflected in this range; if the separation of the two arrays is such that the TE and TM components of an incident wave polarized at slant 45° experience a 90° phase shift, reflection will occur in CP. The concept and performance limitations are theoretically investigated using transmission line theory as well as full wave results. The predicted performance is validated by means of experimental results on a fabricated prototype. The proposed structure is pertinent for employment as a quasi-optical diplexer in CP dual-band systems such as reflector antennas.
Resumo:
A double layer circular polarization (CP) frequency selective surface (FSS) for use as a dual-band quasi-optical diplexer suitable for deployment in reflector antenna systems is described. The FSS was designed to reflect Ku band signals (11.7–12.75 GHz) while transmitting Ka band signals (17.3–20.2 GHz) and conserving CP in each of these bands. The simulated/measured reflection loss over the Ku band was less than 0.05/0.1 dB for both TE and TM polarizations, while the simulated/measured axial ratio was less than 0.2/0.75 dB. Over the Ka band, the simulated/measured transmission loss for both polarizations was below 0.25/0.4 dB and the simulated/measured axial ratio was less than 0.25/0.75 dB. To the best of our knowledge, this is the first report of a metallo-dielectric FSS that simultaneously operates in CP for an oblique angle of incidence in both Ku and Ka bands.
Resumo:
A practical method to achieve both decoupling and six polarisation states by employing the mode-based approach for a four-element antenna is presented. The eigenmode theory as well as a practical implementation scheme are presented. The resulting approach can operate with vertical, horizontal, slant +45°, slant -45°, right-hand circular polarisation, or left-hand circular polarisation. A prototype has been manufactured and measured results show good agreement with simulations.
Resumo:
A means of encoding and decoding data using wireless orbital angular momentum (OAM) modes is proposed and analysed. Source data symbols are used to select an OAM mode, which is generated using an 8-element circular array. A 2-element array is used to detect the mode by estimating the phase gradient of the received signal, and hence identifying the transmitted data symbol. The results are presented in terms of mode estimation error.
Resumo:
Women of letters writes a new history of English women's intellectual worlds using their private letters as evidence of hidden networks of creative exchange. The book argues that many women of this period engaged with a life of the mind and demonstrates the dynamic role letter-writing played in the development of ideas. Until now, it has been assumed that women's intellectual opportunities were curtailed by their confinement in the home. This book illuminates the household as a vibrant site of intellectual thought and expression. Amidst the catalogue of day-to-day news in women's letters are sections dedicated to the discussion of books, plays and ideas. Through these personal epistles, Women of letters offers a fresh interpretation of intellectual life in the late seventeenth and early eighteenth centuries, one that champions the ephemeral and the fleeting in order to rediscover women's lives and minds.