115 resultados para Cine 3D
Resumo:
The formulation of a 3D composite element and its use in a mixed-mode fracture mechanics example is presented. This element, like a conventional 3D finite element, has three degrees of freedom per node although, like a plate element, the strains are defined in the local directions of the mid-plane surface. The stress-strain property matrix of this element was modified to decouple the stresses in the local mid-plane and the strains normal to this plane thus preventing the element from being too stiff in bending. A main advantage of this formulation is the ability to model a laminate with a single 3D element. The motivation behind this work was to improve the computational efficiency associated with the calculation of strain energy release rates in laminated structures. A comparison of mixed-mode results using different elements of an in-house finite element package are presented. Good agreement was achieved between the results obtained using the new element and coventional higher-order elements
Resumo:
The quality of single crystal diamond obtained by microwave CVD processes has been drastically improved in the last 5 years thanks to surface pretreatment of the substrates [A. Tallaire, J. Achard, F. Silva, R.S. Sussmann, A. Gicquel, E. Rzepka, Physica Status Solidi (A) 201, 2419-2424 (2004); G. Bogdan, M. Nesladek, J. D'Haen, J. Maes, V.V. Moshchalkov, K. Haenen, M. D'Olieslaeger, Physica Status Solidi (A) 202, 2066-2072 (2005); M. Yamamoto, T. Teraji, T. Ito, Journal of Crystal Growth 285, 130-136 (2005)]. Additionally, recent results have unambiguously shown the occurrence of (110) faces on crystal edges and (113) faces on crystal corners [F. Silva, J. Achard, X. Bonnin, A. Michau, A. Tallaire, O. Brinza, A. Gicquel, Physica Status Solidi (A) 203, 3049-3055 (2006)]. We have developed a 3D geometrical growth model to account for the final crystal morphology. The basic parameters of this growth model are the relative displacement speeds of (111), (110) and (113) faces normalized to that of the (100) faces, respectively alpha, beta, and gamma. This model predicts both the final equilibrium shape of the crystal (i.e. after infinite growth time) and the crystal morphology as a function of alpha, beta, gamma, and deposition time.
An optimized operating point, deduced from the model, has been validated experimentally by measuring the growth rate in (100), (111), (110), and (113) orientations. Furthermore, the evolution of alpha, beta, gamma as a function of methane concentration in the gas discharge has been established. From these results, crystal growth strategies can be proposed in order, for example, to enlarge the deposition area. In particular, we will show, using the growth model, that the only possibility to significantly increase the deposition area is, for our growth conditions, to use a (113) oriented substrate. A comparison between the grown crystal and the model results will be discussed and characterizations of the grown film (Photoluminescence spectroscopy, EPR, SEM) will be presented. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
2002cx-like supernovae are a sub-class of sub-luminous Type Ia supernovae (SNe). Their light curves and spectra are characterized by distinct features that indicate strong mixing of the explosion ejecta. Pure turbulent deflagrations have been shown to produce such mixed ejecta. Here, we present hydrodynamics, nucleosynthesis and radiative-transfer calculations for a 3D full-star deflagration of a Chandrasekhar-mass white dwarf. Our model is able to reproduce the characteristic observational features of SN 2005hk (a prototypical 2002cx-like supernova), not only in the optical, but also in the near-infrared. For that purpose we present, for the first time, five near-infrared spectra of SN 2005hk from -0.2 to 26.6 d with respect to B-band maximum. Since our model burns only small parts of the initial white dwarf, it fails to completely unbind the white dwarf and leaves behind a bound remnant of ~1.03Mconsisting mainly of unburned carbon and oxygen, but also enriched by some amount of intermediate-mass and iron-group elements from the explosion products that fall back on the remnant.We discuss possibilities for detecting this bound remnant and how it might influence the late-time observables of 2002cx-like SNe. © 2013 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society.
Resumo:
Novel 3D plasmonic rolls are fabricated through strain-induced self-rolling of metallic nanopore sheets attached to elastomeric thin films, with optical properties tunable by varying the size and thickness of nanopores, and dynamically by light irradiation.
Resumo:
Porous titanium samples were manufactured using the 3D printing and sintering method in order to determine the effects of final sintering temperature on morphology and mechanical properties. Cylindrical samples were printed and split into groups according to a final sintering temperature (FST). Irregular geometry samples were also printed and split into groups according to their FST. The cylindrical samples were used to determine part shrinkage, in compressive tests to provide stress-strain data, in microCT scans to provide internal morphology data and for optical microscopy to determine surface morphology. All of the samples were used in microhardness testing to establish the hardness. Below 1100 C FST, shrinkage was in the region of 20% but increased to approximately 30% by a FST of 1300 C. Porosity varied from a maximum of approximately 65% at the surface to the region of 30% internally. Between 97 and 99% of the internal porosity is interconnected. Average pore size varied between 24 µm at the surface and 19 µm internally. Sample hardness increased to in excess of 300 HV0.05 with increasing FST while samples with an FST of below 1250 C produced an elastic-brittle stress/strain curve and samples above this displayed elastic-plastic behaviour. Yield strength increased significantly through the range of sintering temperatures while the Young's modulus remained fairly consistent. © 2013 Elsevier B.V.
Resumo:
Seepage flow under hydraulic structures provided with intermediate filters has been investigated. The flow through the banks of the canal has been included in the model. Different combinations of intermediate filter and canal width were studied. Different lengths of the floor, differential heads, and depths of the sheet pile driven beneath the floor were also investigated. The introduction of an intermediate filter to the floor of hydraulic structures reduced the uplift force acting on the downstream floor by up to 72%. The maximum uplift reduction occurred when the ratio of the distance of filter location downstream from the cutoff to the differential head was 1. Introducing a second filter in the downstream side resulted in a further reduction in the exit hydraulic gradient and in the uplift force, which reached 90%. The optimum locations of the two filters occurred when the first filter was placed just downstream of the cutoff wall and the second filter was placed nearly at the middistance between the cutoff and the end toe of the floor. The results showed significant differences between the three-dimensional (3D) and the two-dimensional (2D) analyses.
Resumo:
A 3-D coupled temperature-displacement finite element analysis is performed to study an ultrasonic consolidation process. Results show that ultrasonic wave is effective in causing deformation in aluminum foils. Ultrasonic vibration leads to an oscillating stress field. The oscillation of stress in substrate lags behind the ultrasonic vibration by about 0.1 cycle of ultrasonic wave. The upper foil, which is in contact with the substrate, has the most severe deformation. The substrate undergoes little deformation. Apparent material softening by ultrasonic wave, which is of great concern for decades, is successfully simulated. The higher the friction coefficient, the more obvious the apparent material softening effect.