98 resultados para Cholesteric Cellulose Derivatives
Resumo:
Purpose: To compare the endothelial protection of sodium hyaluronate and hydroxypropylmethylcellulose against endothelial damage induced by irrigation. Methods: An in vitro assay with freshly excised porcine eyes was developed using the Janus green photometry technique. Irrigation and aspiration technique was standardised. Forty pairs of porcine eyes were used. One randomly chosen eye was filled with sodium hyaluronate (SH) and the other with hydroxypropylmethylcellulose (HPMC). Irrigation and aspiration was carried out with balanced salt solution for 5 min. Twenty additional pairs of porcine eyes served as controls. Student's t-test was used for statistical analysis. Results: Both viscoelastic agents protected the endothelium as compared with controls. The endothelial protection, determined with the Janus green photometric technique, was significantly greater with HPMC than with SH. Conclusions: Viscoelastic agents are effective in protecting the endothelium from irrigation damage in porcine eyes in vitro. HPMC provided greater protection than SH in this particular model.
Resumo:
A sandwich immunoassay for PSA/ACT complex detection based on gold nanoparticle aggregation using two probes was developed. The functionalized colloidal gold nanoparticles (AuNPs) showed highly stable not only in the presence of high ionic strength but also in a wide pH range. The functionalized AuNPs were tagged with PSA/ACT complex monoclonal antibody and goat PSA polyclonal antibody and served as the probes to induce aggregation of the colloidal particles. As a result, PSA/ACT complex was detected at concentrations as low as 1 ng/ml. This is the first time that a new aggregation sandwich-immunoassay technique using two gold probes has been used, and the results are generally applicable to other LSPR-based immunoassays.
Resumo:
The zero-length crosslinker EDC has been widely used to make amide bonds between carboxylic acid and amine groups for bioconjugation because no residues remain in the crosslinked protein. During the conjugation process, EDC activates the carboxyl groups (negatively charged) and forms an unstable amine-reactive intermediate (positively charged). However, the process turns to be a problematic issue if it is applied to modify carboxyl-functionalized and –stabilized Au nanoparticles (AuNPs) due to the fact that the negatively repulsive forces which help to stabilize the AuNPs were disrupted leading to the colloid aggregation. Therefore, to modify the negatively carboxyl-terminated AuNPs while their stability can be maintained yet, we assume that functionalization of the AuNPs using 02 kinds of negatively charged groups which one serves as a linking agent, and the other one plays a role of negative charge maintainer could overcome the impediment.
In this study, the colloidal gold nanoparticles were synthesized by Turkevitch’s method, and then their surface was rationally functionalized with different molar ratios of HS(CH2)11(OCH2CH2)6OCH2COOH and HS(CH2)11(OCH2CH2)3OH (OEG6-COOH/OEG3-OH) by self assembling technique. As a result, the most appropriate molar ratio was found to be 1:10, and the AuNP aggregation was prevented not only in the activation process by EDC but also in the present of high concentration of NaCl as well as over in a wide pH range. This is the first time that extremely stable OEG derivatives-functionalized Au nanoparticles for protein bioconjugation using EDC chemistry is reported, and the results open the door for covalent bioconjugation of AuNPs in biological applications.
Resumo:
The present invention provides phosphorylated and pyrophosphate derivatives of polyols, and structural derivatives of these compounds, and provides pharmaceutical compositions comprising the same. The compounds and compositions disclosed herein have various biological activities, including for example, as allosteric effectors of hemoglobin and/or as kinase inhibitors. The present invention further provides methods for therapy in human or mammalian patients, and methods for synthesis of biologically active compounds and their intermediates.
Resumo:
Purpose: A systematic review of the validity, reliability and sensitivity of the Short Form (SF) health survey measures among breast cancer survivors.
Methods: We searched a number of databases for peer-reviewed papers. The methodological quality of the papers was assessed using the COnsenus-based Standards for the selection of health Measurement INstruments (COSMIN).
Results: The review identified seven papers that assessed the psychometric properties of the SF-36 (n = 5), partial SF-36 (n = 1) and SF-12 (n = 1) among breast cancer survivors. Internal consistency scores for the SF measures ranged from acceptable to good across a range of language and ethnic sub-groups. The SF-36 demonstrated good convergent validity with respective subscales of the Functional Assessment of Cancer Treatment—General scale and two lymphedema-specific measures. Divergent validity between the SF-36 and Lymph-ICF was modest. The SF-36 demonstrated good factor structure in the total breast cancer survivor study samples. However, the factor structure appeared to differ between specific language and ethnic sub-groups. The SF-36 discriminated between survivors who reported or did not report symptoms on the Breast Cancer Prevention Trial Symptom Checklist and SF-36 physical sub-scales, but not mental sub-scales, discriminated between survivors with or without lymphedema. Methodological quality scores varied between and within papers.
Conclusion: Short Form measures appear to provide a reliable and valid indication of general health status among breast cancer survivors though the limited data suggests that particular caution is required when interpreting scores provided by non-English language groups. Further research is required to test the sensitivity or responsiveness of the measure.
Resumo:
Lignocellulosic biomass pretreatment and the subsequent thermal conversion processes to produce solid, liquid, and gas biofuels are attractive solutions for today's energy challenges. The structural study of the main components in biomass and their macromolecular complexes is an active and ongoing research topic worldwide. The interactions among the three main components, cellulose, hemicellulose, and lignin, are studied in this paper using electronic structure methods, and the study includes examining the hydrogen bond network of cellulose-hemicellulose systems and the covalent bond linkages of hemicellulose-lignin systems. Several methods (semiempirical, Hartree-Fock, and density functional theory) using different basis sets were evaluated. It was shown that theoretical calculations can be used to simulate small model structures representing wood components. By comparing calculation results with experimental data, it was concluded that B3LYP/6-31G is the most suitable basis set to describe the hydrogen bond system and B3LYP/6-31G(d,p) is the most suitable basis set to describe the covalent system of woody biomass. The choice of unit model has a much larger effect on hydrogen bonding within cellulose-hemicellulose system, whereas the model choice has a minimal effect on the covalent linkage in the hemicellulose-lignin system. © 2011 American Chemical Society.
Resumo:
Biomass pyrolysis is an efficient way to transform raw biomass or organic waste materials into useable energy, including liquid, solid, and gaseous materials. Levoglucosan (1,6-anhydro-β-d-glucopyranose) and formaldehyde are two important products in biomass pyrolysis. The formation mechanism of these two products was investigated using the density functional theory (DFT) method based on quantum mechanics. It was found that active anhydroglucose can be obtained from a cellulose homolytic reaction during high-temperature steam gasification of the biomass process. Anhydroglucose undergoes a hydrogen-donor reaction and forms an intermediate, which can transform into the products via three pathways, one (path 1) for the formation of levoglucosan and two (paths 2 and 3) for formaldehyde. A total of six elementary reactions are involved. At a pressure of 1 atm, levoglucosan can be formed at all of the temperatures (450-750 K) considered in this simulation, whereas formaldehyde can be formed only when the temperature is higher than 475 K. Moreover, the energy barrier of levoglucosan formation is lower than that of formaldehyde, which is in agreement with the mechanism proposed in the experiments. © 2011 American Chemical Society.
Resumo:
The mechanisms and kinetics studies of the formation of levoglucosan and formaldehyde from anhydroglucose radical have been carried out theoretically in this paper. The geometries and frequencies of all the stationary points are calculated at the B3LYP/6-31+G(D,P) level based on quantum mechanics, Six elementary reactions are found, and three global reactions are involved. The variational transition-state rate constants for the elementary reactions are calculated within 450-1500 K. The global rate constants for every pathway are evaluated from the sum of the individual elementary reaction rate constants. The first-order Arrhenius expressions for these six elementary reactions and the three pathways are suggested. By comparing with the experimental data, computational methods without tunneling correction give good description for Path1 (the formation of levoglucosan); while methods with tunneling correction (zero-curvature tunneling and small-curvature tunneling correction) give good results for Path2 (the first possibility for the formation of formaldehyde), all the test methods give similar results for Path3 (the second possibility for the formation of formaldehyde), all the modeling results for Path3 are in good agreement with the experimental data, verifying that it is the most possible way for the formation of formaldehyde during cellulose pyrolysis. © 2012 Elsevier Ltd. All rights reserved.
Resumo:
Levoglucosan (1,6-anhydro-β-d-glucopyranose) decomposition is an important step during cellulose pyrolysis and for secondary tar reactions. The mechanism of levoglucosan thermal decomposition was studied in this paper using density functional theory methods. The decomposition included direct CO bond breaking, direct CC bond breaking, and dehydration. In total, 9 different pathways, including 16 elementary reactions, were studied, in which levoglucosan serves as a reactant. The properties of the reactants, transition states, intermediates, and products for every elementary reaction were obtained. It was found that 1-pentene-3,4-dione, acetaldehyde, 2,3-dihydroxypropanal, and propanedialdehyde can be formed from the CO bond breaking decomposition reactions. 1,2-Dihydroxyethene and hydroxyacetic acid vinyl ester can be formed from the CC bond breaking decomposition reactions. It was concluded that CO bond breaking is easier than CC bond breaking due to a lower activation energy and a higher released energy. During the 6 levoglucosan dehydration pathways, one water molecule which composed of a hydrogen atom from C3 and a hydroxyl group from C2 is the preferred pathway due to a lower activation energy and higher product stability. © 2012 Elsevier B.V. All rights reserved.
Resumo:
(Chemical Equation Presented) The mechanisms and kinetics studies of the levoglucosan (LG) primary decomposition during cellulose pyrolysis have been carried out theoretically in this paper. Three decomposition mechanisms (C-O bond scission, C-C bond scission, and LG dehydration) including nine pathways and 16 elementary reactions were studied at the B3LYP/6-31 + G(D,P) level based on quantum mechanics. The variational transi-tion- state rate constants for every elementary reaction and every pathway were calculated within 298-1550 K. The first-order Arrhenius expressions for these 16 elementary reactions and nine pathways were suggested. It was concluded that computational method using transition state theory (TST) without tunneling correction gives good description for LG decomposition by comparing with the experimental result. With the temperature range of 667-1327 K, one dehydration pathway, with one water molecule composed of a hydrogen atom from C3 and a hydroxyl group from C2, is a preferred LG decomposition pathway by fitting well with the experimental results. The calculated Arrhenius plot of C-O bond scission mechanism is better agreed with the experimental Arrhenius plot than that of C-C bond scission. This C-O bond scission mechanism starts with breaking of C1-O5 and C6-O1 bonds with formation of CO molecule (C1-O1) simultaneously. C-C bond scission mechanism is the highest energetic barrier pathway for LG decomposition. © 2013 Elsevier Ltd. All rights reserved.
Resumo:
Levoglucosan is one important primary product during cellulose pyrolysis either as an intermediate or as a product. Three available mechanisms for levoglucosan formation have been studied theoretically in this paper, which are free-radical mechanism; glucose intermediate mechanism; and levoglucosan chain-end mechanism. All the elementary reactions included in the pathway of every mechanism were investigated; thermal properties including activation energy, Gibbs free energy, and enthalpy for every pathway were also calculated. It was concluded that free-radical mechanism has the highest energy barrier during the three levoglucosan formation mechanisms, glucose intermediate mechanism has lower energy barrier than free-radical mechanism, and levoglucosan chain-end mechanism is the most reasonable pathway because of the lowest energy barrier. By comparing with the activation energy obtained from the experimental results, it was also concluded that levoglucosan chain-end mechanism fits better with the experimental data for the formation of levoglucosan. © 2013 Elsevier B.V. All rights reserved.
Resumo:
A mutant strain (UV4) of the soil bacterium Pseudomonas putida, containing toluene dioxygenase, has been used in the metabolic oxidation of 1,2-dihydrobenzocyclobutene 12 dagger and the related substrates 1,2-dihydrobenzocyclobuten-1-ol 13 and biphenylene 33. Stable angular cis-monohydrodiol metabolites (1R,2S)-bicyclo[4.2.0]octa-3,5-diene-1,2 7, (1S,2S,8S)-bicyclo[4.2.0]octa-3,5-diene-1,2,8-triol 8 and biphenylene-cis-1,8b-diol 9, isolated from each of these substrates, have been structurally and stereochemically assigned. The structure, enantiopurity and absolute configuration of the other cis-diol metabolites, (2R,3S)-bicyclo[4.2.0]octa-1(6),4-diene-2,3-diol 14 and cis-1,2-dihydroxy-1,2-dihydrobenzocyclobutene 16, and the benzylic oxidation bioproducts, 1,2-dihydrobenzocyclobuten-1-ol 13, 1,2-dihydrobenzocyclobuten-1-one 15 and 2-hydroxy-1,2-dihydrobenzocyclobuten-1-one 17, obtained from 1,2-dihydrobenzocyclobutene and 1,2-dihydrobenzocyclobuten-1-ol, have been determined with the aid of chiral stationary-phase HPLC, NMR and CD spectroscopy, and stereochemical correlation. X-Ray crystallographic methods have been used in the determination of absolute configuration of the di-camphanates 27 (from diol 7) and 32 (from diol 9), and the di-MTPA ester 29 (from diol 14) of the corresponding cis-diol metabolites. The metabolic sequence involved in the formation of bioproducts derived from 1,2-dihydrobenzocyclobutene 12 has been investigated.
Resumo:
The threat of antimicrobial resistance has placed increasing emphasis on the development of innovative approaches to eradicate multidrug-resistant pathogens. Biofilm-forming microorganisms, for example, Staphylococcus epidermidis and Staphylococcus aureus, are responsible for increased incidence of biomaterial infection, extended hospital stays and patient morbidity and mortality. This paper highlights the potential of ultrashort tetra-peptide conjugated to hydrophobic cinnamic acid derivatives. These peptidomimetic molecules demonstrate selective and highly potent activity against resistant biofilm forms of Gram-positive medical device-related pathogens. 3-(4-Hydroxyphenyl)propionic)-Orn-Orn-Trp-Trp-NH2 displays particular promise with minimum biofilm eradication concentration (MBEC) values of 125 µg/ml against methicillin sensitive (ATCC 29213) and resistant (ATCC 43300) S. aureus and activity shown against biofilm forms of Escherichia coli (MBEC: 1000 µg/ml). Kill kinetics confirms complete eradication of established 24-h biofilms at MBEC with 6-h exposure. Reduced cell cytotoxicity, relative to Gram-positive pathogens, was proven via tissue culture (HaCaT) and haemolysis assays (equine erythrocytes).
Existing in nature as part of the immune response, antimicrobial peptides display great promise for exploitation by the pharmaceutical industry in order to increase the library of available therapeutic molecules. Ultrashort variants are particularly promising for translation as clinical therapeutics as they are more cost-effective, easier to synthesise and can be tailored to specific functional requirements based on the primary sequence allowing factors such as spectrum of activity to be varied.