182 resultados para Charge nurse
Resumo:
The role of net charge (Z) of thiols in their ability to radioprotect cells has been investigated in a glutathione (GSH)-deficient strain of E. coli. This strain, 7, is deficient in the enzyme gamma-glutamylcysteine synthetase and allows the effects of added low molecular weight thiols to be studied. Using the gas explosion system it is possible to measure the chemical repair of the free-radical precursors of lethal lesions by thiols in intact cells. The first-order chemical repair rate in strain 7 is 280s(-1) in comparison with 1100s(-1) in the wild-type strain 1157. From the measured difference in the intracellular concentration of GSH between the wild-type and the mutant, this gives a second-order repair rate, k(r)'s of 1.23 +/- 0.3 X 10(5) dm(3)mol(-1)s(-1). Measurement of intracellular thiol levels after addition of various low molecular weight thiols showed that uptake was rapid, leading to stable thiol levels within 1 min. The ratios of the intracellular to extracellular concentrations (C-in/C-out) were 0.74 for 3-mercaptopropionic acid (Z=-1), 0.56 for 2-mercaptoethanol (Z=0), 1.47 for cysteamine (Z=+1) and 1.04 for WR1065 (Z=+2). The k(r)'s for these thiols were 1.3 +/- 0.5 X 10(5) dm(3)mol(-1)s(-1) for 30-mercaptopropionic acid, 3.3 +/- 1.6 x 10(5) dm(3)mol(-1)s(-1) for 2-mercaptoethanol, 3.9 +/- 1.1 X 10(5) dm(3)mol(-1)s(-1) for cysteamine and 2.7 +/- 1.1 X 10(6) dm(3)mol(-1)s(-1) for WR1065. These are lower and increase less with charge than previously published values for chemical repair in isolated pBR322 DNA, probably because of the association of nucleoproteins and polyamines with the cellular DNA of E. coli. However, the approximate three-fold increase in k(r) per unit increase in Z shows that the counter-ion condensation and co-ion depletion are important in determining the effectiveness of charged thiols in the radioprotection of E. coli.
Resumo:
The dynamics of transient electric fields generated by the interaction of high intensity laser pulses with underdense plasmas has been studied experimentally with the proton projection imaging technique. The formation of a charged channel, the propagation of its front edge and the late electric field evolution have been characterized with high temporal and spatial resolution. Particle-in-cell simulations and an electrostatic, ponderomotive model reproduce the experimental features and trace them back to the ponderomotive expulsion of electrons and the subsequent ion acceleration.
Effects of Charge Location on the Absorptions and Lifetimes of Protonated Tyrosine Peptides in Vacuo
Resumo:
Nearby charges affect the electronic energy levels of chromophores, with the extent of the effect being determined by the magnitude of the charge and degree of charge-chromophore separation. The molecular configuration dictates the charge chromophore distance. Hence, in this study, we aim to assess how the location of the charge influences the absorption of a set of model protonated and diprotonated peptide ions, and whether spectral differences are large enough to be identified. The studied ions were the dipeptide YK, the tripeptide KYK (Y = tyrosine; K = lysine) and their complexes with 18-crown-6-ether (CE). The CE targets the ammonium group by forming internal ionic hydrogen bonds and limits the folding of the peptide. In the tripeptide, the distance between the chromophore and the backbone ammonium is enlarged relative to that in the dipeptide. Experiments were performed in an electrostatic ion storage ring using a tunable laser system, and action spectra based on lifetime measurements were obtained in the range from 210 to 310 nm. The spectra are all quite similar though there seems to be some changes in the absorption band between 210 and 250 nm, while in the lower energy band all ions had a maximum absorption at similar to 275 nm. Lifetimes after photoexcitation were found to shorten upon protonation and lengthen upon CE complexation, in accordance with the increased number of degrees of freedom and an increase in activation energies for dissociation as the mobile proton model is no longer operative.
Resumo:
Reported are total, absolute charge-exchange cross sections for collisions of 3He(2+) ions with He and H-2. Measurements are reported at fixed energies between 0.33 and 4.67 keV/amu. Both the present results and earlier results of others are analyzed in terms of available experimental small-angle differential cross sections as a function of collision energy, and hence the geometry of the exit aperture of the gas-collision cells used by the various experimental groups. In addition, the effective length of gas-collision cells is studied using fluid dynamic and molecular flow simulations to address the density patterns near the cell entrance and exit apertures. When small acceptance-angle corrections were applied, the results of present and previous measurements for the single electron capture in these systems were brought into good accord in the relevant energy ranges. Taken in their entirety, the present data for 3He(2+) with He and H-2 lend themselves to new theoretical calculations of the multichannel charge-exchange cross sections.